首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Every planar graph is known to be acyclically 5-colorable (O. V. Borodin, 1976), which bound is precise. Some sufficient conditions are also obtained for a planar graph to be acyclically 4-colorable. In particular, the acyclic 4-colorabilitywas proved for the following planar graphs: without 3- and 4-cycles (O. V. Borodin, A. V. Kostochka, and D. R. Woodall, 1999), without 4-, 5-, and 6-cycles (M. Montassier, A. Raspaud, and W. Wang, 2006), and either without 4-, 6-, and 7-cycles or without 4-, 6-, and 8-cycles (M. Chen, A. Raspaud, and W. Wang, 2009). In this paper it is proved that each planar graph with neither 4-cycles nor 6-cycles is acyclically 4-colorable.  相似文献   

2.
3.
《Discrete Mathematics》2022,345(4):112790
DP-coloring of graphs as a generalization of list coloring was introduced by Dvo?ák and Postle (2018). In this paper, we show that every planar graph without intersecting 5-cycles is DP-4-colorable, which improves the result of Hu and Wu (2017), who proved that every planar graph without intersecting 5-cycles is 4-choosable, and the results of Kim and Ozeki (2018).  相似文献   

4.
5.
In this paper, we mainly prove that planar graphs without 4-, 7- and 9-cycles are 3-colorable.  相似文献   

6.
7.
8.
9.
10.
Min Chen 《Discrete Mathematics》2008,308(24):6216-6225
A proper vertex coloring of a graph G=(V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L-list colorable if for a given list assignment L={L(v):vV}, there exists a proper acyclic coloring π of G such that π(v)∈L(v) for all vV. If G is acyclically L-list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k-choosable. In this paper we prove that every planar graph without 4-cycles and without two 3-cycles at distance less than 3 is acyclically 5-choosable. This improves a result in [M. Montassier, P. Ochem, A. Raspaud, On the acyclic choosability of graphs, J. Graph Theory 51 (2006) 281-300], which says that planar graphs of girth at least 5 are acyclically 5-choosable.  相似文献   

11.
Some structural properties of planar graphs without 4-cycles are investigated. By the structural properties, it is proved that every planar graph G without 4-cycles is edge-(Δ(G)+1)-choosable, which perfects the result given by Zhang and Wu: If G is a planar graph without 4-cycles, then G is edge-t-choosable, where t=7 if Δ(G)=5, and otherwise t=Δ(G)+1.  相似文献   

12.
On 3-colorability of planar graphs without adjacent short cycles   总被引:1,自引:0,他引:1  
A short cycle means a cycle of length at most 7.In this paper,we prove that planar graphs without adjacent short cycles are 3-colorable.This improves a result of Borodin et al.(2005).  相似文献   

13.
A (k,d)-list assignment L of a graph G is a mapping that assigns to each vertex v a list L(v) of at least k colors satisfying |L(x)L(y)|d for each edge xy. A graph G is (k,d)-choosable if there exists an L-coloring of G for every (k,d)-list assignment L. This concept is also known as choosability with separation. In this paper, we prove that any planar graph G is (3,1)-choosable if any i-cycle is not adjacent to a j-cycle, where 5i6 and 5j7.  相似文献   

14.
《Discrete Mathematics》2023,346(4):113288
Square coloring is a variant of graph coloring where vertices within distance two must receive different colors. When considering planar graphs, the most famous conjecture (Wegner, 1977) states that 32Δ+1 colors are sufficient to square color every planar graph of maximum degree Δ. This conjecture has been proven asymptotically for graphs with large maximum degree. We consider here planar graphs with small maximum degree and show that 2Δ+7 colors are sufficient, which improves the best known bounds when 6?Δ?31.  相似文献   

15.
A graph is (k1,k2)-colorable if it admits a vertex partition into a graph with maximum degree at most k1 and a graph with maximum degree at most k2. We show that every (C3,C4,C6)-free planar graph is (0,6)-colorable. We also show that deciding whether a (C3,C4,C6)-free planar graph is (0,3)-colorable is NP-complete.  相似文献   

16.
《Discrete Mathematics》2021,344(12):112600
An (m,n)-colored-mixed graph G=(V,A1,A2,,Am,E1,E2,,En) is a graph having m colors of arcs and n colors of edges. We do not allow two arcs or edges to have the same endpoints. A homomorphism from an (m,n)-colored-mixed graph G to another (m,n)-colored-mixed graph H is a morphism φ:V(G)V(H) such that each edge (resp. arc) of G is mapped to an edge (resp. arc) of H of the same color (and orientation). An (m,n)-colored-mixed graph T is said to be Pg(m,n)-universal if every graph in Pg(m,n) (the planar (m,n)-colored-mixed graphs with girth at least g) admits a homomorphism to T.We show that planar Pg(m,n)-universal graphs do not exist for 2m+n3 (and any value of g) and find a minimal (in the number vertices) planar Pg(m,n)-universal graphs in the other cases.  相似文献   

17.
Albert Guan 《Discrete Mathematics》2009,309(20):6044-6047
Given a (possibly improper) edge colouring F of a graph G, a vertex colouring of G is adapted toF if no colour appears at the same time on an edge and on its two endpoints. A graph G is called (for some positive integer k) if for any list assignment L to the vertices of G, with |L(v)|≥k for all v, and any edge colouring F of G, G admits a colouring c adapted to F where c(v)∈L(v) for all v. This paper proves that a planar graph G is adaptably 3-choosable if any two triangles in G have distance at least 2 and no triangle is adjacent to a 4-cycle.  相似文献   

18.
In this paper we prove that every planar graph without cycles of length 4, 5, 6 and 8 is 3-colorable.  相似文献   

19.
In Thomassen (1995) [4], Thomassen proved that planar graphs of girth at least 5 are 3-choosable. In Li (2009) [3], Li improved Thomassen’s result by proving that planar graphs of girth 4 with no 4-cycle sharing a vertex with another 4- or 5-cycle are 3-choosable. In this paper, we prove that planar graphs of girth 4 with no 4-cycle sharing an edge with another 4- or 5-cycle are 3-choosable. It is clear that our result strengthens Li’s result.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号