首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chung defined a pebbling move on a graph G to be the removal of two pebbles from one vertex and the addition of one pebble to an adjacent vertex. The pebbling number of a connected graph is the smallest number f(G) such that any distribution of f(G) pebbles on G allows one pebble to be moved to any specified, but arbitrary vertex by a sequence of pebbling moves. Graham conjectured that for any connected graphs G and H, f(G×H)≤ f(G)f(H). We prove Graham's conjecture when G is a cycle for a variety of graphs H, including all cycles. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 141–154, 2003  相似文献   

3.
4.
5.
In this paper we introduce the concept of fair reception of a graph which is related to its domination number. We prove that all graphs G with a fair reception of size γ(G) satisfy Vizing's conjecture on the domination number of Cartesian product graphs, by which we extend the well‐known result of Barcalkin and German concerning decomposable graphs. Combining our concept with a result of Aharoni, Berger and Ziv, we obtain an alternative proof of the theorem of Aharoni and Szabó that chordal graphs satisfy Vizing's conjecture. A new infinite family of graphs that satisfy Vizing's conjecture is also presented. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 45‐54, 2009  相似文献   

6.
Vizing's conjecture from 1968 asserts that the domination number of the Cartesian product of two graphs is at least as large as the product of their domination numbers. In this paper we survey the approaches to this central conjecture from domination theory and give some new results along the way. For instance, several new properties of a minimal counterexample to the conjecture are obtained and a lower bound for the domination number is proved for products of claw‐free graphs with arbitrary graphs. Open problems, questions and related conjectures are discussed throughout the paper. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 46–76, 2012  相似文献   

7.
Ash's functions N σ ,k count the number of k ‐equivalence classes of σ ‐structures of size n . Some conditions on their asymptotic behavior imply the long standing spectrum conjecture. We present a new condition which is equivalent to this conjecture and we discriminate some easy and difficult particular cases. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
9.
Artin's primitive root conjecture for function fields was proved by Bilharz in his thesis in 1937, conditionally on the proof of the Riemann hypothesis for function fields over finite fields, which was proved later by Weil in 1948. In this paper, we provide a simple proof of Artin's primitive root conjecture for function fields which does not use the Riemann hypothesis for function fields but rather modifies the classical argument of Hadamard and de la Vallée Poussin in their 1896 proof of the prime number theorem.  相似文献   

10.
《Discrete Mathematics》2022,345(12):113078
Let G be a simple connected graph and let Sk(G) be the sum of the first k largest Laplacian eigenvalues of G. It was conjectured by Brouwer in 2006 that Sk(G)e(G)+(k+12) holds for 1kn?1. The case k=2 was proved by Haemers, Mohammadian and Tayfeh-Rezaie [Linear Algebra Appl., 2010]. In this paper, we propose the full Brouwer's Laplacian spectrum conjecture and we prove the conjecture holds for k=2 which also confirm the conjecture of Guan et al. in 2014.  相似文献   

11.
We define a map F with domain a certain subset of the set of light leaves (certain morphisms between Soergel bimodules introduced by the author in an earlier paper) and range the set of prime numbers. Using results of Soergel we prove the following property of F  : if the image p=F(l)p=F(l) of some light leaf l under F is bigger than the Coxeter number of the corresponding Weyl group, then there is a counterexample to Lusztig's conjecture in characteristic p. We also introduce the “double leaves basis” which is an improvement of the light leaves basis that has already found interesting applications. In particular it forms a cellular basis of Soergel bimodules that allows us to produce an algorithm to find “the bad primes” for Lusztig's conjecture.  相似文献   

12.
A graph G is a quasi‐line graph if for every vertex vV(G), the set of neighbors of v in G can be expressed as the union of two cliques. The class of quasi‐line graphs is a proper superset of the class of line graphs. Hadwiger's conjecture states that if a graph G is not t‐colorable then it contains Kt + 1 as a minor. This conjecture has been proved for line graphs by Reed and Seymour. We extend their result to all quasi‐line graphs. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 17–33, 2008  相似文献   

13.
《Discrete Mathematics》2023,346(6):113360
We provide new approaches to prove identities for the modified Macdonald polynomials via their LLT expansions. As an application, we prove a conjecture of Haglund concerning the multi-t-Macdonald polynomials of two rows.  相似文献   

14.
15.
The Strong Circular 5‐flow Conjecture of Mohar claims that each snark—with the sole exception of the Petersen graph—has circular flow number smaller than 5. We disprove this conjecture by constructing an infinite family of cyclically 4‐edge connected snarks whose circular flow number equals 5. © 2006 Wiley Periodicals, Inc. J Graph Theory  相似文献   

16.
Meyniel conjectured that the cop number c(G) of any connected graph G on n vertices is at most for some constant C. In this article, we prove Meyniel's conjecture in special cases that G has diameter 2 or G is a bipartite graph of diameter 3. For general connected graphs, we prove , improving the best previously known upper‐bound O(n/ lnn) due to Chiniforooshan.  相似文献   

17.
《Discrete Mathematics》2023,346(2):113249
Barnette's Conjecture claims that all cubic, 3-connected, planar, bipartite graphs are Hamiltonian. We give a translation of this conjecture into the matching-theoretic setting. This allows us to relax the requirement of planarity to give the equivalent conjecture that all cubic, 3-connected, Pfaffian, bipartite graphs are Hamiltonian.A graph, other than the path of length three, is a brace if it is bipartite and any two disjoint edges are part of a perfect matching. Our perspective allows us to observe that Barnette's Conjecture can be reduced to cubic, planar braces. We show a similar reduction to braces for cubic, 3-connected, bipartite graphs regarding four stronger versions of Hamiltonicity. Note that in these cases we do not need planarity.As a practical application of these results, we provide some supplements to a generation procedure for cubic, 3-connected, planar, bipartite graphs discovered by Holton et al. (1985) [14]. These allow us to check whether a graph we generated is a brace.  相似文献   

18.
19.
In this paper, we prove that Wright's equation y(t)=?αy(t?1){1+y(t)} has a unique slowly oscillating periodic solution for parameter values α(π2,1.9], up to time translation. This result proves Jones' Conjecture formulated in 1962, that there is a unique slowly oscillating periodic orbit for all α>π2. Furthermore, there are no isolas of periodic solutions to Wright's equation; all periodic orbits arise from Hopf bifurcations.  相似文献   

20.
Hadwiger's conjecture states that every graph with chromatic number χ has a clique minor of size χ. In this paper we prove a weakened version of this conjecture for the class of claw‐free graphs (graphs that do not have a vertex with three pairwise nonadjacent neighbors). Our main result is that a claw‐free graph with chromatic number χ has a clique minor of size $\lceil\frac{2}{3}\chi\rceil$. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 259–278, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号