首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For this research, an examination on the magnetohydrodynamic flow of a micropolar fluid across a moving vertical porous plate for the presence of thermal radiation is achieved. It is necessary to translate the partial differential equations regulating the flow, heat, & mass transfer into dimensionless form employing proper non-dimensional variables, which are then cracked numerically by utilizing the Finite difference approach. Graphs are used to represent numerical values of various flow profiles; however, tables are used to represent the simulated values of rate coefficients. The velocity rises when the value of Grashof number, dimensionless viscosity ratio is raised, and the opposite effect is seen when the value of magnetic parameter, micro-gyration factor is raised. The result in skin friction coefficient improves when the values of magnetic parameter, micro-gyration factor, Prandtl number, and radiation are raised higher.  相似文献   

2.
The purpose of this study is to investigate non-Darcian mixed convection flow, heat and mass transfer in a non-Newtonian power-law fluid over a flat plate embedded in porous medium with suction and viscous dissipation and also is to demonstrate the application and utility of a recently developed multi-domain bivariate spectral quasi-linearisation method (MD-BSQLM) in finding the solutions of highly nonlinear differential equations. The flow is subject to, among other source terms, internal heat generation, thermal radiation and partial velocity slip. The coupled system of nonlinear partial differential equations are solved using a MD-BSQLM to find the fluid properties, the skin friction, as well as the heat and mass coefficients. We have presented selected results that give the significance of some system parameters on the fluid properties. This MD-BSQLM has not been used before in the literature to find the nature of the solutions of power-law fluids. Indeed, validation of this numerical method for general fluid flows, heat and mass transfer problems has not yet been done. This study presents the first opportunity to evaluate the accuracy and robustness of the MD-BSQLM in finding solutions of non-Newtonian fluids.  相似文献   

3.
Mixed convective flow of fourth grade (Non-Newtonian) fluid model by a Riga stretchable plate is addressed. The aim of the current research work is therefore to explain the role of the fourth grade (Non-Newtonian) fluid model in the field of fluid dynamics. Energy and concentration equations are modeled subject to both Fourier's law of heat conduction and Fick's law. Radiation aspects and heat source/sink phenomenon are also accounted. Entropy analysis is discussed through second thermodynamics law. The (OHAM) approach is used to achieve a meaningful solution. Finally, the emerging variables behavior on the velocity, temperature, concentration and entropy rate are discussed graphically. Here, velocity enhances for increasing range of fourth grade variable. Temperature boosts against rising radiation and thermal relaxation variables, but opposite trend is noted for solutal relaxation parameter on concentration.  相似文献   

4.
Staymates ME  Smith WJ  Windsor E 《The Analyst》2011,136(19):3967-3972
Swipe-based explosive trace detectors rely on thermal desorption to vaporize explosive particles collected on a swipe. The vaporized material is carried by air flows from the desorption unit to the inlet of the chemical analyzer, typically an ion mobility spectrometer. We have observed that the amount of explosives detected from a swipe varies with the physical location of explosives collected on the swipe. There are two issues that may contribute to this effect: inhomogeneous or insufficient heating of the swipe during desorption and low velocity air flows that inefficiently transport desorbed vapor during the instruments analysis time. To better characterize this effect, we have simulated the air movements within a generic desorption unit using commercially available computational fluid dynamics software. Simulations are three dimensional, symmetric and solved under steady, laminar flow conditions. The calculated velocity field correlates directly with experimental detector response to the high explosive RDX. Results suggest that the limiting factor in this model thermal desorption unit is the flow-field around the swipe and flow rate into the detector, rather than heat transfer to the swipe itself. Buoyancy effects due to heating dominate the flow-field and produce a vertical bulk fluid motion within the domain that opposes much of the flow drawn into the analyzer.  相似文献   

5.

In the present study, heat transfer and fluid flow of a pseudo-plastic non-Newtonian nanofluid over permeable surface has been solved in the presence of injection and suction. Similarity solution method is utilized to convert the governing partial differential equations into ordinary differential equations, which then is solved numerically using Runge–Kutta–Fehlberg fourth–fifth order (RKF45) method. The Cu, CuO, TiO2 and Al2O3 nanoparticles are considered in this study along with sodium carboxymethyl cellulose (CMC)/water as base fluid. Validation has been done with former numerical results. The influence of power-law index, volume fraction of nanoparticles, nanoparticles type and permeability parameter on nanofluid flow and heat transfer was investigated. The results of the study illustrated that the flow and heat transfer of non-Newtonian nanofluid in the presence of suction and injection has different behaviors. For injection and the impermeable plate, the non-Newtonian nanofluid shows a better heat transfer performance compared to Newtonian nanofluid. However, changing the type of nanoparticles has a more intense influence on heat transfer process during suction. It was also observed that in injection, contrary to the other two cases, the usage of non-Newtonian nanofluid can decrease heat transfer in all cases.

  相似文献   

6.

This paper presents the flow and heat transfer characteristics of an electrically conducting Casson fluid past an exponentially stretching curved surface with convective boundary condition. The fluid motion is assumed to be laminar and time dependent. The effects of temperature-dependent thermal conductivity, Joule heating, thermal radiation, and variable heat source/sink are deemed. Suitable transformations are considered to transform the governing partial differential equations as ordinary ones and then solved by the numerical procedures like shooting and Runge–Kutta method. Graphs are outlined to describe the influence of various dimensionless parameters on the fields of velocity and temperature and observe that there is an enhancement in the field of temperature with the radiation, temperature-dependent thermal conductivity, and irregular heat parameters. Also, the Casson parameter has a tendency to suppress the distribution of momentum but an inverse development is noticed for the curvature parameter. Attained outcomes are also compared with the existing literature in the limiting case, and good agreement is perceived.

  相似文献   

7.
《印度化学会志》2022,99(12):100782
Nanofluids have a vital role in many industries due to their novelty of heat transfer. Various mathematical techniques are required to simulate such problems. It can seem that traditional partial differential equations are incapable of analyzing and investigating the physical behavior of flow parameters affected by memory effects. This research communicates the implementation of the most interesting analytical method namely Prabhakar fractional derivative regarding the thermal flow of Casson fluid with single and multiwall carbon-nanotubes due to an inclined plate. The water and blood are considered as base particles. slip and Newtonian heating impacts for the thermal flow are also considered. The fractional modal of leading PDE's is attained by Prabhakar fractional derivative with various limiting cases. The generalized solution for the thermal and velocity field is simulated via the Laplace transformation method. The thermal expressions are modeled via Fourier expressions. Graphs are used to illustrate the influence and behaviour of key physical and fractional characteristics. The finding is that the temperature and velocity profiles of SWCNTs are more prominent than those of MWCNTs. Changing the fractional parameter values results in a greater rise in the velocity gradient for blood-based nanofluid than for water-based nanofluid.  相似文献   

8.
Considering the significance of non-Newtonian fluid usage in manufacturing such as molten plastics, polymeric materials, pulps, and so on, significant efforts have been made to investigate the phenomenon of non-Newtonian fluids. In this article the influences of heat and mass transfer on non-Newtonian Walter's B fluid flow over uppermost catalytic surface of a paraboloid is encountered. An elasticity of the fluid layer is considered in the freestream together with heat source/sink and has the tendency to cause heat flow in the fluid saturated domain. The flow problem of two-dimensional Walter's B fluid is represented using Law of conservation of mass, momentum, heat, and concentration along with thermal and solutal chemical reactive boundary conditions. The governing equations are non-linear partial differential equation and are non-dimensionalized by employing stream function and similarity transformation. The final dimensionless equations yielded are coupled non-linear ordinary differential equations. Furthermore, shooting technique along with RK-4th order method is used to get the numerical results. Graphs and tables are modeled by using MATLAB software to check the effects of Walter's B parameter, Chemical reaction parameter and Thickness parameter on temperature, velocity, and concentration profiles. Tabular analysis shows the results of some physical parameters like skin friction coefficient, Nusselt number and Sherwood number due to the variation of Walter's B parameter, thickness parameter and chemical reactive parameter.  相似文献   

9.
《印度化学会志》2022,99(11):100758
Over the years, the fluid flows in conjunction with thermal transport between non-parallel surfaces having converging nature is of great significance due to their broad spectrum of applications, which include fluid flows through nozzles in petroleum engineering, blood flow in arteries, lubrication systems, automobile radiators, thermal pumps, and water purification processes. Additionally, hybrid nanofluid is a prolific topic because of its thermal properties and potentials which provide a better performance even compared with common nanofluid in optimizing heat transfer. Therefore, this article presents a numerical simulation to investigate the heat transport characteristics of hybrid nanofluids in Jeffery-Hamel flow through a convergent channel. The considered hybrid nanofluids are composed of Copper (Cu) and Graphene-oxide (Go) as suspended nanoparticles and water as base fluid. This analysis further includes the impacts of viscous dissipation and magnetic field. A mathematical model for fluid flow and heat transfer are constructed with the help of cylindrical polar coordinates. The governing equations are converted into a system of ordinary differential equations (ODEs) by Lie symmetry group transformation. A MATLAB code is exercise to get the numerical solutions for flow and thermal distributions. An interesting phenomenon is that dual solutions are obtained in the computation. Thus, a comprehensive discussion is included on the dual solutions for various involved variables. The current findings may be employed in petroleum science, r biomedical scientists, polymer industry, etc.  相似文献   

10.
This paper is concerned with a review of heat and mass transfer between thermal plasmas and particulate matter. In this situation various effects which are not present in ordinary heat and mass transfer have to be considered, including unsteady conditions, modified convective heat transfer due to strongly varying plasma properties, radiation, internal conduction, particle shape, vaporization and evaporation, noncontinuum conditions, and particle charging. The results indicate that (i) convective heat transfer coefficients have to be modified due to strongly varying plasma properties; (ii) vaporization, defined as a mass transfer process corresponding to particle surface temperatures below the boiling point, describes a different particle heating history than that of the evaporation process which, however, is not a critical control mechanism for interphase mass transfer of particles injected into thermal plasmas; (iii) particle heat transfer under noncontinuum conditions is governed by individual contributions from the species in the plasma (electrons, ions, neutral species) and by particle charging effects.  相似文献   

11.
In this article, the theoretical heat transfer of flexible multilayer insulation material which can be used in high (<433 K) and low temperature (>123 K) environments has been analyzed. A mathematical model has been developed to describe the heat flux through flexible multilayer insulation material, where the heat transfer consists of thermal radiation, solid spacers and gas heat transfer. The equations for heat transfer model have been solved by iterative method combining with dichotomy method using Matlab. Comparison between the experimental results and the calculated values which are obtained from the model shows that the model is feasible to be applied in practical estimation. The investigation on the flexible multilayer thermal insulation material will present active instruction to improve the performance and accomplish optimum design of the material.  相似文献   

12.

This research article investigates that how heat flow changes versus temperature or time on the rheology of magnetohydrodynamic Brinkman fluid embedded in porous medium for the oscillations of heated plate. A fractional approach namely Caputo–Fabrizio fractional operator is applied for developing the governing partial differential equations of Brinkman fluid flow. The fractional governing partial differential equations have been modeled for temperature distribution, mass concentration and velocity field along with imposed initial and boundary conditions. The solutions are obtained by integral transforms and presented in special and elementary functions. In the limiting sense, the analytical solutions are particularized in the presence and absence of heat and mass transfer, magnetic field and porous medium. The parametric graphs have been depicted for the influence of different embedded rheological parameters on fluid flow. The results show few interesting differences and similarities by comparative analysis for fractional and ordinary Brinkman fluid flow, such as physically higher Prandtl (Pr) number that leads to decay thermal diffusivity which results in the reduction in thermal field; this means that better quality of production can be achieved through proper choice of Prandtl (Pr) and Schmidt (Sc) numbers.

  相似文献   

13.
PurposeThe purpose of the current framework is to scrutinize the two-dimensional flow and heat transfer of Casson nanofluid over cylinder/plate along with impacts of thermophoresis and Brownian motion effects. Also, the effects of exponential thermal sink/source, bioconvection, and motile microorganisms are taken.Methodology/ApproachThe resulting non-linear equations (PDEs) are reformed into nonlinear ODEs by using appropriate similarity variables. The resultant non-linear (ODEs) were numerically evaluated by the use of the Bvp4c package in the mathematical solver MATLAB.FindingsThe numerical and graphical illustration regarding outcomes represents the performance of flow-involved physical parameters on velocity, temperature, concentration, and microorganism profiles. Additionally, the skin friction coefficient, local Nusselt number, local Sherwood number, and local microorganism density number are computed numerically for the current presented system. We noted that the velocity profile diminishes for the rising estimations of magnetic and mixed convection parameters. The Prandtl number corresponds with the declining performance of the temperature profile observed. The enhancement in the values of the Solutal Biot number and Brownian motion parameter increased in the concentration profile.OriginalityIn specific, this framework focuses on the rising heat transfer of Casson nanofluid with bioconvection by using a shooting mathematical model. The novel approach of the presented study is the use of motile microorganisms with exponential thermal sink/source in a Casson nano-fluid through a cylinder/plate. A presented study performed first time in the author’s opinion. Understanding the flow characteristics and behaviors of these nanofluids is crucial for the scientific community in the developing subject of nanofluids.  相似文献   

14.
The study of the inclined flow along with the heterogeneous/homogeneous reactions in the fluid has been widely used in many industrial and engineering applications, such as petrochemical, pharmaceutical, materials science, heat exchanger design, fluid flow through porous media, etc. The purpose of this study is to present an infinite shear rate viscosity model using the inclined Carreau fluid with nanoscale heat transport. The model considers the effect of inclined angle on the fluid’s viscosity and the transfer of heat at the nanoscale. The result shows that the viscosity of the fluid decreases by increasing the inclination angle and the coefficient of heat transfer also increases with the inclination. The model can be used to predict the viscosity and heat transfer fluid’s behavior in the inclined systems that is widely used in the industrial and engineering applications. The results provide a better understanding of the inclined flow behavior of fluids and the heat transfer at the nanoscale, which can be useful in heat exchanger design, fluid flow through porous media, etc. Greater Infinite shear rate viscosity parameter gives the higher magnitude of Carreau fluid velocity. Moreover, inclined magnetic field reduces the velocity due to Lorentz force. Two numerical schemes are used to solve the model, BVP4C and Shooting.  相似文献   

15.
Mixed convection flow, heat, and mass transfer about an isothermal vertical flat plate embedded in a fluid-saturated porous medium and the effects of viscous dissipation and thermophoresis in both aiding and opposing flows are analyzed. The similarity solution is used to transform the problem under consideration into a boundary value problem of coupled ordinary differential equations, which are solved numerically by using the shooting method. Numerical computations are carried out for the non-dimensional physical parameter. The results are analyzed for the effect of different physical parameters such as thermophoretic, mixed convection, inertia parameter, buoyancy ratio, and Schmid number on the flow, heat, and mass transfer characteristics. Two cases are considered, one corresponding to the presence of viscous dissipation and the other to the absence of it.  相似文献   

16.
《印度化学会志》2023,100(1):100877
In the presence of thermal radiation, heat generation/absorption, and chemical reaction, the heat and mass transmission characteristics of a 2-D electrically conducting incompressible Maxwell fluid past a stretched sheet have been examined. There are various real-world applications for this issue, notably the extrusion of polymers and metal thinning. The transport equations take into account Brownian motion as well as thermophoresis when there is a chemical reaction involved. By making use of the relevant similarity variables, the PDEs that govern the stream and the boundary conditions that go along with them may be non-dimensionalized. The ensuing transformed ODEs are solved using the fourth- and fifth-order Runge-Kutta-Fehlberg scheme. It has been determined and quantitatively examined how the different embedded thermo-physical factors influence the velocity, temperature, and concentration. A case study comparison between our findings and those published in the literature reveals a high degree of agreement. Raising the value of the chemical reaction parameter causes a narrowing of the concentration distribution while increasing the temperature causes thermal radiation to have a greater impact. As the quantity of Nt increases, the thickness of the boundary layer grows, causing the surface temperature to increase, ensuing in a temperature increase.  相似文献   

17.
The steady magnetohydrodynamic (MHD) flow of an incompressible viscous non-Newtonian power law fluid above an infinite rotating porous disk with heat transfer is studied. A uniform magnetic field is applied perpendicularly to the plane of the disk and a uniform injection or suction is applied through the surface of the disk. Numerical solutions of the nonlinear differential equations which govern the hydromagnetic and heat transfer are obtained. The effects of characteristics of the non-Newtonian fluid, the magnetic field parameter and the suction or injection velocity on the velocity and temperature distributions are considered.  相似文献   

18.
Gallium nitride (GaN) is a wide-bandgap semiconductor material with a wide array of applications in optoelectronics and electronics. Modeling of the fluid flow and thermal fields is discussed, and simulations of velocity and volumetric-flow-rate profiles in different pressure systems are shown. The nutrient is considered as a porous media bed, and the flow is simulated using the Darcy?CBrinkman?CForchheimer model. The resulting governing equations are solved using the finite-volume method. We analyzed the heat and mass transfer behaviors in autoclaves with diameters of 2.22, 4.44, and 10 cm. The effects of baffle design on flow pattern, and heat and mass transfer in different autoclaves are analyzed. For the research-grade autoclave with diameter of 2.22 cm, the constraint for the GaN growth is found to be the growth kinetics and the total area of seed surfaces in the case of baffle opening of 10%. For large-size pressure systems, the concentration profiles change dramatically due to stronger convection at higher Grashof numbers. The volumetric flow rates of the solvent across the baffles are calculated. Since ammonothermal growth experiments are expensive and time consuming, modeling becomes an effective tool for research and optimization of ammonothermal growth processes.  相似文献   

19.
《印度化学会志》2023,100(2):100907
In this paper, an impact of non-linear thermal radiation, Brownian and thermophoresis on an MHD through a wedge with dissipative impacts for Jeffrey fluid is investigated. In addition, heat transport analysis is carried out. This work's originality is attributable to the Jeffrey fluid formulation, nonlinear thermal radiation, Brownian and Thermophoresis. The boundary layer approximations are examined, to transform the governing equations into partial differential equations. Utilizing appropriate similarity transformations, the boundary value issue is expressed in ordinary differential form. BVP4C, a nonlinear numerical method, was utilized to determine the outcomes of velocity, concentration and temperature fields at multiple points of the measured quantities. The skin friction term, Sherwood and Nusselt numbers were analyzed in depth, and the findings are achieved graphically and tabularly. A comparison via the previously published data reveals a good degree of concordance. This research focuses mostly on the modelling of flow in a nuclear reactor. The boundary layer flow caused by a wedge surface play s a crucial role the aspects of geothermal and heat exchangers systems.  相似文献   

20.

In this paper, we analyze the effect of heat transfer on the flow of tangent hyperbolic nanofluid in a ciliated tube (fallopian tube where embryo in blood make the development). This study will be beneficial for the researchers and medical experts in the field of embryology. The nanoparticles are beneficial to remove the cysts from the fallopian tube where development of embryo takes place. To resolves the ciliary flow problems, medical doctors use nanoparticles (drug delivery) that may create a temperature gradient. The heat transfer helps to optimize the energy for which the entropy generation is reduced. Therefore, in this research we discuss the heat transfer effect on tangent hyperbolic nanofluid and entropy generation due to ciliary movement. The governing partial differential equations are solved by HPM and software MATHEMATICA?. Effect of viscoelastic parameter, nanoparticles, cilia length and Brinkman number on the velocity, temperature and entropy generation has been illustrated with the help of graphs. Graphical results show that thermal conductivity of fluid increases by adding nanoparticles. The entropy generation due to nanoparticles will decrease the viscosity near the tube wall and blood through tube will flow with normal pressure.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号