首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In Wang and Xu (2006) [15] and [16] the authors introduced a family of graphs Hn and gave some methods for finding graphs among this family that are determined by their generalized spectra. This paper is a continuation of our previous work. We further show that almost all graphs in Hn are determined by their generalized spectra. This gives some evidences for the conjecture that almost all graphs are determined by their generalized spectra.  相似文献   

2.
Graph domination numbers and algorithms for finding them have been investigated for numerous classes of graphs, usually for graphs that have some kind of tree-like structure. By contrast, we study an infinite family of regular graphs, the generalized Petersen graphs G(n). We give two procedures that between them produce both upper and lower bounds for the (ordinary) domination number of G(n), and we conjecture that our upper bound ⌈3n/5⌉ is the exact domination number. To our knowledge this is one of the first classes of regular graphs for which such a procedure has been used to estimate the domination number.  相似文献   

3.
The clique graph of G, K(G), is the intersection graph of the family of cliques (maximal complete sets) of G. Clique-critical graphs were defined as those whose clique graph changes whenever a vertex is removed. We prove that if G has m edges then any clique-critical graph in K-1(G) has at most 2m vertices, which solves a question posed by Escalante and Toft [On clique-critical graphs, J. Combin. Theory B 17 (1974) 170-182]. The proof is based on a restatement of their characterization of clique-critical graphs. Moreover, the bound is sharp. We also show that the problem of recognizing clique-critical graphs is NP-complete.  相似文献   

4.
We apply two methods to the block diagonalization of the adjacency matrix of the Cayley graph defined on the affine group. The affine group will be defined over the finite ring Z/pnZ. The method of irreducible representations will allow us to find nontrivial eigenvalue bounds for two different graphs. One of these bounds will result in a family of Ramanujan graphs. The method of covering graphs will be used to block diagonalize the affine graphs using a Galois group of graph automorphisms. In addition, we will demonstrate the method of covering graphs on a generalized version of the graphs of Lubotzky et al. [A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988) 261-277].  相似文献   

5.
A graph H is said to be light in a family H of graphs if each graph GH containing a subgraph isomorphic to H contains also an isomorphic copy of H such that each its vertex has the degree (in G) bounded above by a finite number φ(H,H) depending only on H and H. We prove that in the family of all 3-connected plane graphs of minimum degree 5 (or minimum face size 5, respectively), the paths with certain small graphs attached to one of its ends are light.  相似文献   

6.
A clique in a graph is a complete subgraph maximal under inclusion. The clique graph of a graph is the intersection graph of its cliques. A graph is self-clique when it is isomorphic to its clique graph. A circular-arc graph is the intersection graph of a family of arcs of a circle. A Helly circular-arc graph is a circular-arc graph admitting a model whose arcs satisfy the Helly property. In this note, we describe all the self-clique Helly circular-arc graphs.  相似文献   

7.
A path cover of a graph G=(V,E) is a family of vertex-disjoint paths that covers all vertices in V. Given a graph G, the path cover problem is to find a path cover of minimum cardinality. This paper presents a simple O(n)-time approximation algorithm for the path cover problem on circular-arc graphs given a set of n arcs with endpoints sorted. The cardinality of the path cover found by the approximation algorithm is at most one more than the optimal one. By using the result, we reduce the path cover problem on circular-arc graphs to the Hamiltonian cycle and Hamiltonian path problems on the same class of graphs in O(n) time. Hence the complexity of the path cover problem on circular-arc graphs is the same as those of the Hamiltonian cycle and Hamiltonian path problems on circular-arc graphs.  相似文献   

8.
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. A graph G is clique-perfect if the sizes of a minimum clique-transversal and a maximum clique-independent set are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. Another open question concerning clique-perfect graphs is the complexity of the recognition problem. Recently we were able to characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs. These characterizations lead to polynomial time recognition of clique-perfect graphs in these classes of graphs. In this paper we solve the characterization problem in two new classes of graphs: diamond-free and Helly circular-arc () graphs. This last characterization leads to a polynomial time recognition algorithm for clique-perfect graphs.  相似文献   

9.
Polar cographs     
Polar graphs are a natural extension of some classes of graphs like bipartite graphs, split graphs and complements of bipartite graphs. A graph is (s,k)-polar if there exists a partition A,B of its vertex set such that A induces a complete s-partite graph (i.e., a collection of at most s disjoint stable sets with complete links between all sets) and B a disjoint union of at most k cliques (i.e., the complement of a complete k-partite graph).Recognizing a polar graph is known to be NP-complete. These graphs have not been extensively studied and no good characterization is known. Here we consider the class of polar graphs which are also cographs (graphs without induced path on four vertices). We provide a characterization in terms of forbidden subgraphs. Besides, we give an algorithm in time O(n) for finding a largest induced polar subgraph in cographs; this also serves as a polar cograph recognition algorithm. We examine also the monopolar cographs which are the (s,k)-polar cographs where min(s,k)?1. A characterization of these graphs by forbidden subgraphs is given. Some open questions related to polarity are discussed.  相似文献   

10.
A graph is balanced if its clique-matrix contains no edge–vertex incidence matrix of an odd chordless cycle as a submatrix. While a forbidden induced subgraph characterization of balanced graphs is known, there is no such characterization by minimal forbidden induced subgraphs. In this work, we provide minimal forbidden induced subgraph characterizations of balanced graphs restricted to graphs that belong to one of the following graph classes: complements of bipartite graphs, line graphs of multigraphs, and complements of line graphs of multigraphs. These characterizations lead to linear-time recognition algorithms for balanced graphs within the same three graph classes.  相似文献   

11.
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs.  相似文献   

12.
An (h,s,t)-representation of a graph G consists of a collection of subtrees of a tree T, where each subtree corresponds to a vertex in G, such that (i) the maximum degree of T is at most h, (ii) every subtree has maximum degree at most s, (iii) there is an edge between two vertices in the graph G if and only if the corresponding subtrees have at least t vertices in common in T. The class of graphs that have an (h,s,t)-representation is denoted by [h,s,t]. It is well known that the class of chordal graphs corresponds to the class [3, 3, 1]. Moreover, it was proved by Jamison and Mulder that chordal graphs correspond to orthodox-[3, 3, 1] graphs defined below.In this paper, we investigate the class of [h,2,t] graphs, i.e., the intersection graphs of paths in a tree. The [h,2,1] graphs are also known as path graphs [F. Gavril, A recognition algorithm for the intersection graphs of paths in trees, Discrete Math. 23 (1978) 211-227] or VPT graphs [M.C. Golumbic, R.E. Jamison, Edge and vertex intersection of paths in a tree, Discrete Math. 55 (1985) 151-159], and [h,2,2] graphs are known as the EPT graphs. We consider variations of [h,2,t] by three main parameters: h, t and whether the graph has an orthodox representation. We give the complete hierarchy of relationships between the classes of weakly chordal, chordal, [h,2,t] and orthodox-[h,2,t] graphs for varied values of h and t.  相似文献   

13.
Trapezoid graphs are the intersection family of trapezoids where every trapezoid has a pair of opposite sides lying on two parallel lines. These graphs have received considerable attention and lie strictly between permutation graphs (where the trapezoids are lines) and cocomparability graphs (the complement has a transitive orientation). The operation of “vertex splitting”, introduced in (Cheah and Corneil, 1996) [3], first augments a given graph G and then transforms the augmented graph by replacing each of the original graph’s vertices by a pair of new vertices. This “splitted graph” is a permutation graph with special properties if and only if G is a trapezoid graph. Recently vertex splitting has been used to show that the recognition problems for both tolerance and bounded tolerance graphs is NP-complete (Mertzios et al., 2010) [11]. Unfortunately, the vertex splitting trapezoid graph recognition algorithm presented in (Cheah and Corneil, 1996) [3] is not correct. In this paper, we present a new way of augmenting the given graph and using vertex splitting such that the resulting algorithm is simpler and faster than the one reported in (Cheah and Corneil, 1996) [3].  相似文献   

14.
We give a complete characterization of on-line arbitrarily vertex decomposable graphs in the family of unicycle graphs called suns. A sun is a graph with maximum degree three, such that deleting vertices of degree one results in a cycle. This result has already been used in another paper to prove some Ore-type conditions for on-line arbitrarily decomposable graphs.  相似文献   

15.
In this paper, we prove that if a claw-free graph G with minimum degree δ?4 has no maximal clique of two vertices, then G has a 2-factor with at most (|G|-1)/4 components. This upper bound is best possible. Additionally, we give a family of claw-free graphs with minimum degree δ?4 in which every 2-factor contains more than n/δ components.  相似文献   

16.
There are several density functions for graphs which have found use in various applications. In this paper, we examine two of them, the first being given by b(G)=|E(G)|/|V(G)|, and the other being given by g(G)=|E(G)|/(|V(G)|−ω(G)), where ω(G) denotes the number of components of G. Graphs for which b(H)≤b(G) for all subgraphs H of G are called balanced graphs, and graphs for which g(H)≤g(G) for all subgraphs H of G are called 1-balanced graphs (also sometimes called strongly balanced or uniformly dense in the literature). Although the functions b and g are very similar, they distinguish classes of graphs sufficiently differently that b(G) is useful in studying random graphs, g(G) has been useful in designing networks with reduced vulnerability to attack and in studying the World Wide Web, and a similar function is useful in the study of rigidity. First we give a new characterization of balanced graphs. Then we introduce a graph construction which generalizes the Cartesian product of graphs to produce what we call a generalized Cartesian product. We show that generalized Cartesian product derived from a tree and 1-balanced graphs are 1-balanced, and we use this to prove that the generalized Cartesian products derived from 1-balanced graphs are 1-balanced.  相似文献   

17.
A graph is biclique-Helly when its family of (maximal) bicliques is a Helly family. We describe characterizations for biclique-Helly graphs, leading to polynomial time recognition algorithms. In addition, we relate biclique-Helly graphs to the classes of clique-Helly, disk-Helly and neighborhood-Helly graphs.  相似文献   

18.
We consider four families of pancake graphs, which are Cayley graphs, whose vertex sets are either the symmetric group on n objects or the hyperoctahedral group on n objects and whose generating sets are either all reversals or all reversals inverting the first k elements (called prefix reversals). We find that the girth of each family of pancake graphs remains constant after some small threshold value of n.  相似文献   

19.
M. Abreu 《Discrete Mathematics》2008,308(10):1810-1815
Murty [A generalization of the Hoffman-Singleton graph, Ars Combin. 7 (1979) 191-193.] constructed a family of (pm+2)-regular graphs of girth five and order 2p2m, where p?5 is a prime, which includes the Hoffman-Singleton graph [A.J. Hoffman, R.R. Singleton, On Moore graphs with diameters 2 and 3, IBM J. (1960) 497-504]. This construction gives an upper bound for the least number f(k) of vertices of a k-regular graph with girth 5. In this paper, we extend the Murty construction to k-regular graphs with girth 5, for each k. In particular, we obtain new upper bounds for f(k), k?16.  相似文献   

20.
A near-polygonal graph is a graph Γ which has a set C of m-cycles for some positive integer m such that each 2-path of Γ is contained in exactly one cycle in C. If m is the girth of Γ then the graph is called polygonal. We provide a construction of an infinite family of polygonal graphs of arbitrary odd girth with 2-arc transitive automorphism groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号