首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this short note we argue that the toughness of split graphs can be computed in polynomial time. This solves an open problem from a recent paper by Kratsch et al. (Discrete Math. 150 (1996) 231–245).  相似文献   

2.
A triangular grid graph is a finite induced subgraph of the infinite graph associated with the two-dimensional triangular grid. In 2000, Reay and Zamfirescu showed that all 2-connected, linearly-convex triangular grid graphs (with the exception of one of them) are hamiltonian. The only exception is a graph D which is the linearly-convex hull of the Star of David. We extend this result to a wider class of locally connected triangular grid graphs. Namely, we prove that all connected, locally connected triangular grid graphs (with the same exception of graph D) are hamiltonian. Moreover, we present a sufficient condition for a connected graph to be fully cycle extendable. We also show that the problem Hamiltonian Cycle is NP-complete for triangular grid graphs.  相似文献   

3.
The Hamiltonian index of a graph G is defined as
h(G)=min{m:Lm(G) is Hamiltonian}.  相似文献   

4.
A retraction f of a graph G is an edge-preserving mapping of G with f(v)=v for all vV(H), where H is the subgraph induced by the range of f. A graph G is called End-orthodox (End-regular) if its endomorphism monoid End X is orthodox (regular) in the semigroup sense. It is known that a graph is End-orthodox if it is End-regular and the composition of any two retractions is also a retraction. The retractions of split graphs are given and End-orthodox split graphs are characterized.  相似文献   

5.
A Hamiltonian graph G of order n is k-ordered, 2 ≤ kn, if for every sequence v1, v2, …, vk of k distinct vertices of G, there exists a Hamiltonian cycle that encounters v1, v2, …, vk in this order. Define f(k, n) as the smallest integer m for which any graph on n vertices with minimum degree at least m is a k-ordered Hamiltonian graph. In this article, answering a question of Ng and Schultz, we determine f(k, n) if n is sufficiently large in terms of k. Let g(k, n) = − 1. More precisely, we show that f(k, n) = g(k, n) if n ≥ 11k − 3. Furthermore, we show that f(k, n) ≥ g(k, n) for any n ≥ 2k. Finally we show that f(k, n) > g(k, n) if 2kn ≤ 3k − 6. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 17–25, 1999  相似文献   

6.
In this paper, we investigate the Hamiltonicity of K1,r-free graphs with some degree conditions. In particular, let G be a k-connected grph of order n≧3 which is K1,4-free. If for every independent set {v0, v1, …, vk} then G is hamiltonian. We use an upper bound for the independence number of K1,r-free graphs to extent the above result to K1,r-free graphs. Hamiltonian connected and, more generally, q-edge hamiltonian properties are studied here as well. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
Given a graph G, let S(G) be the set of all cycle lengths contained in G and let s(G)=|S(G)|. Let ?(G)={3,,n}?S(G) and let d be the greatest common divisor of n?2 and all the positive pairwise differences of elements in ?(G). We prove that if a Hamiltonian graph G of order n has at least n(p+2)4+1 edges, where p is an integer such that 1pn?2, then s(G)p or G is exceptional, by which we mean d?(??2) for some ??(G). We also discuss cases where G is not exceptional, for example when n?2 is prime. Moreover, we show that s(G)min{p,n?32}, which if G is bipartite implies that s(G)min{?4(m?1)n?2?,n?22}, where m is the number of edges in G.  相似文献   

8.
A geometric graph is a graph embedded in the plane in such a way that vertices correspond to points in general position and edges correspond to segments connecting the appropriate points. A noncrossing Hamiltonian path in a geometric graph is a Hamiltonian path which does not contain any intersecting pair of edges. In the paper, we study a problem asked by Micha Perles: determine the largest number h(n) such that when we remove any set of h(n) edges from any complete geometric graph on n vertices, the resulting graph still has a noncrossing Hamiltonian path. We prove that . We also establish several results related to special classes of geometric graphs. Let h1(n) denote the largest number such that when we remove edges of an arbitrary complete subgraph of size at most h1(n) from a complete geometric graph on n vertices the resulting graph still has a noncrossing Hamiltonian path. We prove that . Let h2(n) denote the largest number such that when we remove an arbitrary star with at most h2(n) edges from a complete geometric graph on n vertices the resulting graph still has a noncrossing Hamiltonian path. We show that h2(n)=⌈n/2⌉-1. Further we prove that when we remove any matching from a complete geometric graph the resulting graph will have a noncrossing Hamiltonian path.  相似文献   

9.
We consider the existence of Hamiltonian cycles for the locally connected graphs with a bounded vertex degree. For a graph G, let Δ(G) and δ(G) denote the maximum and minimum vertex degrees, respectively. We explicitly describe all connected, locally connected graphs with Δ(G)?4. We show that every connected, locally connected graph with Δ(G)=5 and δ(G)?3 is fully cycle extendable which extends the results of Kikust [P.B. Kikust, The existence of the Hamiltonian circuit in a regular graph of degree 5, Latvian Math. Annual 16 (1975) 33-38] and Hendry [G.R.T. Hendry, A strengthening of Kikust’s theorem, J. Graph Theory 13 (1989) 257-260] on full cycle extendability of the connected, locally connected graphs with the maximum vertex degree bounded by 5. Furthermore, we prove that problem Hamilton Cycle for the locally connected graphs with Δ(G)?7 is NP-complete.  相似文献   

10.
The problem is considered under which conditions a 4-connected planar or projective planar graph has a Hamiltonian cycle containing certain prescribed edges and missing certain forbidden edges. The results are applied to obtain novel lower bounds on the number of distinct Hamiltonian cycles that must be present in a 5-connected graph that is embedded into the plane or into the projective plane with face-width at least five. Especially, we show that every 5-connected plane or projective plane triangulation on n vertices with no non-contractible cyles of length less than five contains at least distinct Hamiltonian cycles. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 81–96, 1999  相似文献   

11.
Thomassen [Reflections on graph theory, J. Graph Theory 10 (1986) 309-324] conjectured that every 4-connected line graph is hamiltonian. An hourglass is a graph isomorphic to K5-E(C4), where C4 is a cycle of length 4 in K5. In Broersma et al. [On factors of 4-connected claw-free graphs, J. Graph Theory 37 (2001) 125-136], it is shown that every 4-connected line graph without an induced subgraph isomorphic to the hourglass is hamiltonian connected. In this note, we prove that every 3-connected, essentially 4-connected hourglass free line graph, is hamiltonian connected.  相似文献   

12.
13.
It is shown that, if t is an integer ≥3 and not equal to 7 or 8, then there is a unique maximal graph having the path Pt as a star complement for the eigenvalue ?2. The maximal graph is the line graph of Km,m if t = 2m?1, and of Km,m+1 if t = 2m. This result yields a characterization of L(G ) when G is a (t + 1)‐vertex bipartite graph with a Hamiltonian path. The graphs with star complement PrPs or PrCs for ?2 are also determined. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 137–149, 2003  相似文献   

14.
A Hamiltonian path of a graph is a simple path which visits each vertex of the graph exactly once. The Hamiltonian path problem is to determine whether a graph contains a Hamiltonian path. A graph is called Hamiltonian connected if there exists a Hamiltonian path between any two distinct vertices. In this paper, we will study the Hamiltonian connectivity of rectangular supergrid graphs. Supergrid graphs were first introduced by us and include grid graphs and triangular grid graphs as subgraphs. The Hamiltonian path problem for grid graphs and triangular grid graphs was known to be NP-complete. Recently, we have proved that the Hamiltonian path problem for supergrid graphs is also NP-complete. The Hamiltonian paths on supergrid graphs can be applied to compute the stitching traces of computer sewing machines. Rectangular supergrid graphs form a popular subclass of supergrid graphs, and they have strong structure. In this paper, we provide a constructive proof to show that rectangular supergrid graphs are Hamiltonian connected except one trivial forbidden condition. Based on the constructive proof, we present a linear-time algorithm to construct a longest path between any two given vertices in a rectangular supergrid graph.  相似文献   

15.
16.
We show how to find in Hamiltonian graphs a cycle of length nΩ(1/loglogn)=exp(Ω(logn/loglogn)). This is a consequence of a more general result in which we show that if G has a maximum degree d and has a cycle with k vertices (or a 3-cyclable minor H with k vertices), then we can find in O(n3) time a cycle in G of length kΩ(1/logd). From this we infer that if G has a cycle of length k, then one can find in O(n3) time a cycle of length kΩ(1/(log(n/k)+loglogn)), which implies the result for Hamiltonian graphs. Our results improve, for some values of k and d, a recent result of Gabow (2004) [11] showing that if G has a cycle of length k, then one can find in polynomial time a cycle in G of length . We finally show that if G has fixed Euler genus g and has a cycle with k vertices (or a 3-cyclable minor H with k vertices), then we can find in polynomial time a cycle in G of length f(g)kΩ(1), running in time O(n2) for planar graphs.  相似文献   

17.
Cycle embedding in star graphs with conditional edge faults   总被引:1,自引:0,他引:1  
Among the various interconnection networks, the star graph has been an attractive one. In this paper, we consider the cycle embedding problem in star graphs with conditional edge faults. We show that there exist cycles of all even lengths from 6 to n! in an n-dimensional star graph with ?2n-7 edge faults in which each vertex is incident with at least two healthy edges for n?4.  相似文献   

18.
In 1956, W.T. Tutte proved that a 4-connected planar graph is hamiltonian. Moreover, in 1997, D.P. Sanders extended this to the result that a 4-connected planar graph contains a hamiltonian cycle through any two of its edges. We prove that a planar graph G has a cycle containing a given subset X of its vertex set and any two prescribed edges of the subgraph of G induced by X if |X|≥3 and if X is 4-connected in G. If X=V(G) then Sanders’ result follows.  相似文献   

19.
In this paper, we study the algebraic connectivity of a Hamiltonian graph, and determine all Hamiltonian graphs whose algebraic connectivity attain the minimum among all Hamiltonian graphs on n vertices.  相似文献   

20.
In this article we study Hamilton cycles in sparse pseudo‐random graphs. We prove that if the second largest absolute value λ of an eigenvalue of a d‐regular graph G on n vertices satisfies and n is large enough, then G is Hamiltonian. We also show how our main result can be used to prove that for every c >0 and large enough n a Cayley graph X (G,S), formed by choosing a set S of c log5 n random generators in a group G of order n, is almost surely Hamiltonian. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 17–33, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号