首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《印度化学会志》2021,98(11):100200
For the first time, the heat transfer performance of a CuO–ZnO (80:20)/water hybrid has been studied experimentally and numerically in a shell and tube heat exchanger under turbulent flow conditions nanofluid (STHE). All experiments are carried out with 0.01 ​vol% CuO–ZnO (80:20)/water hybrid nanofluid at Reynolds numbers (NRe) ranging from 1900 to 17,500. The stabilized hybrid nanofluids (30 ​°C-Tube side) are then used as a coolant to reduce the hot fluid (60 ​°C-shell side) temperature using a STHE, with the results for the convective heat transfer coefficient, Nusselt number, friction factor, and pressure drop reported. The primary goal of this paper is to investigate the impact of hybrid nanoparticle mixing ratio optimization on STHE heat transfer efficiency under various operating conditions. According to the findings, the CuO–ZnO (80:20)/water hybrid nanofluid improved the heat transfer performance of the STHE at all Reynolds numbers. When using nanofluid over water, the Nusselt number and pressure drop were improved by approximately 33% and 13%, respectively. The hybrid nanofluid's maximum thermal performance factor and thermal efficiency enhancement were 1.45 and 7%, respectively, at NRe ​= ​17,500. According to the study, the thermal conductivity of nanofluid varies by only 5% after ten trials. Furthermore, the ANSYS Fluent program was used to predict the behavior of the hybrid nanofluid in STHE, and the simulation results fit the experimental values very well.  相似文献   

2.
A numerical simulation model for laminar flow of nanofluids in a pipe with constant heat flux at the wall has been built to study the effect of Reynolds number on heat transfer and pressure loss. The investigation was performed for metallic oxide and multi-oxide nanoparticles suspended in water. The thermal conductivity and dynamic viscosity were measured for a range of temperature (10–60 °C) and volume fraction of multi-oxide nanofluid. Comparison of the thermal conductivity for monocular oxide and multi-oxide nanofluids reveals a new way to control the enhancement in nanofluid conductivity. The numerical results obtained were compared with existing well-established correlations. The predictions of the Nusselt number for nanofluids are in agreement with the Shah correlation, and the deviation in the results is less than 1 %. It is found that the pressure loss increases with the Reynolds number, nanoparticle density, and volume fraction for multi-oxide nanoparticles. However, the flow demonstrates enhancement in heat transfer which improves with increasing Reynolds number of the flow.  相似文献   

3.

Present experimental investigation incorporates characterization of Al nanopowder, synthesis of Al/water nanofluids, and effect of these nanofluids on thermal performance of compact heat exchanger. Al nanoparticles are characterized using TEM and XRD. Al/water nanofluid is prepared by dispersing metal basis aluminium nanoparticles of average 100 nm size into double distilled water at two different particle volume concentrations of 0.1 and 0.2%. The nanofluids are prepared by two-step method and cetyl trimethyl ammonium bromide surfactant is used to stabilize the nanofluid. Thermo-physical properties of nanofluids at two different concentrations and their variation with fluid temperature are measured experimentally. It is examined that thermal conductivity, viscosity, and density of the nanofluid increased with the increase of volume concentrations. Furthermore, by increasing the fluid temperature, thermal conductivity is intensified, while the viscosity and density are decreased. Heat transfer parameters are strong functions of these thermo-physical properties. Therefore, comprehensive findings on heat transfer coefficient, Nusselt number, colburn factor, friction factor, and effectiveness are determined experimentally for prepared nanofluids passing under laminar conditions through single-pass cross-flow compact heat exchanger attached with multi-louvered fins.

  相似文献   

4.

The present work deals with numerical investigations on heat transfer characteristics and friction factor of aqueous CuO nanofluids flow in a set of four microchannels connected in parallel under laminar regime. For each single phase, volume of fluid, mixture and Eulerian models, a particular computer code is developed to carefully simulate this problem. The three-dimensional steady-state governing equations are solved through finite volume method. The primary aim of this study is to comparatively distinguish the most appropriate and accurate model for numerical studies of nanofluids in microchannels. The results are compared with one another and the data obtained from an experimental work. Regarding the results, an acceptable consistency is observed for all models with the experimental data. The current study truly demonstrates that applying single-phase model to simulate and evaluate the laminar flow of CuO–water nanofluid inside microchannels with uniform wall temperature is more modest, precise and reliable compared with two-phase models.

  相似文献   

5.

In the present study, heat transfer and fluid flow of a pseudo-plastic non-Newtonian nanofluid over permeable surface has been solved in the presence of injection and suction. Similarity solution method is utilized to convert the governing partial differential equations into ordinary differential equations, which then is solved numerically using Runge–Kutta–Fehlberg fourth–fifth order (RKF45) method. The Cu, CuO, TiO2 and Al2O3 nanoparticles are considered in this study along with sodium carboxymethyl cellulose (CMC)/water as base fluid. Validation has been done with former numerical results. The influence of power-law index, volume fraction of nanoparticles, nanoparticles type and permeability parameter on nanofluid flow and heat transfer was investigated. The results of the study illustrated that the flow and heat transfer of non-Newtonian nanofluid in the presence of suction and injection has different behaviors. For injection and the impermeable plate, the non-Newtonian nanofluid shows a better heat transfer performance compared to Newtonian nanofluid. However, changing the type of nanoparticles has a more intense influence on heat transfer process during suction. It was also observed that in injection, contrary to the other two cases, the usage of non-Newtonian nanofluid can decrease heat transfer in all cases.

  相似文献   

6.
The comparative study on the thermo-physical properties of water-based ZnO nanofluids and Ag/ZnO hybrid nanofluids is reported in the present study. The outer surface of ZnO nanoparticles was modified with a thin coating of Ag nanoparticles by a wet chemical method for improved stability and heat transfer properties. The ZnO and Ag/ZnO nanofluids were prepared with varying volume concentration (??=?0.02–0.1%). The synthesized nanoparticles and nanofluids were characterized with different characterization methods viz., scanning electron microscopy, X-ray diffraction, dynamic light scattering, thermal conductivity measurement, and viscosity measurement. Results show that thermal conductivity of Ag/ZnO hybrid nanofluids is found to be significantly higher compared to ZnO nanofluids. The maximum thermal conductivity an enhancement for Ag/ZnO nanofluid (??=?0.1%) is found to 20% and 28% when it compared with ZnO nanofluid (??=?0.1%) and water, respectively.  相似文献   

7.

In this research, three different volume concentrations (??=?0.05, 0.1 and 0.2%) of Al2O3/water, CuO/water and Al2O3–CuO/water (50:50) nanofluids are prepared by adopting a two-step nanofluid preparation method. Al2O3 and CuO nanoparticles with the average diameter of 50 nm and 27 nm were dispersed in distilled water. The thermal conductivity and viscosity of prepared nanofluids are measured for different temperatures by using KD2 Pro thermal property analyzed and Brookfield viscometer, respectively. The effects of nanofluids on the thermal, electrical and overall efficiency of photovoltaic thermal (PVT) solar collector are also studied. The experimental results revealed that the thermal conductivity and viscosity increase with the increase in percentage volume concentration and viscosity decreases with the increase in temperature. Furthermore, the obtained maximum thermal and electrical efficiencies of a PVT solar collector for 0.2% volume concentration of hybrid nanofluids are 82% and 15%, respectively, at peak solar radiation. The highest overall efficiency of a PVT collector with .2% volume concentration of hybrid nanofluid was 97% at peak solar radiation. Results recommend that nanofluids can be used as a heat transfer in PVT solar collector.

  相似文献   

8.
9.
The purpose of this study is to investigate non-Darcian mixed convection flow, heat and mass transfer in a non-Newtonian power-law fluid over a flat plate embedded in porous medium with suction and viscous dissipation and also is to demonstrate the application and utility of a recently developed multi-domain bivariate spectral quasi-linearisation method (MD-BSQLM) in finding the solutions of highly nonlinear differential equations. The flow is subject to, among other source terms, internal heat generation, thermal radiation and partial velocity slip. The coupled system of nonlinear partial differential equations are solved using a MD-BSQLM to find the fluid properties, the skin friction, as well as the heat and mass coefficients. We have presented selected results that give the significance of some system parameters on the fluid properties. This MD-BSQLM has not been used before in the literature to find the nature of the solutions of power-law fluids. Indeed, validation of this numerical method for general fluid flows, heat and mass transfer problems has not yet been done. This study presents the first opportunity to evaluate the accuracy and robustness of the MD-BSQLM in finding solutions of non-Newtonian fluids.  相似文献   

10.
The thermal energy transport analysis with chemotaxis in the free convective flow of viscous nanofluid over stretchable vertically inclined heated sheet is addressed in this article. The fluid forced and free convection motion is investigated and discussed with physical reasoning. The fluid also contains microorganism heavy-bottom species, and their chemotactic motion is studied. In the light of Buongiorno model, the impact of Brownian motion and thermophoresis slip mechanism on thermal conduction in the nanofluid is analyzed. The work is based on the similarity analysis of governing partial differential equations (PDEs) which lead to non-dimensional ordinary differential equations (ODEs). The solution of resulting flow and heat equations is computed via bvp4c technique. The outcomes are represented in graphical abstract. It is noted that free convective flow field increases near to the surface of sheet then it decays to free stream exponentially. Higher magnitude of thermophoretic force boost up the thermal energy transport in nanofluid flow. The Brownian motion enhances temperature profile and lower down the convection velocity. Chemotaxis motion of species in nanofluid is increasing function of bioconvective Peclet number.  相似文献   

11.
Halloysite nanotube (HNT) which is cheap, natural, and easily accessible 1D clay, can be used in many applications, particularly heat transfer enhancement. The aim of this research is to study experimentally the pool boiling heat transfer (PBHT) performance of novel halloysite nanofluids at atmospheric pressure condition from typical horizontal heater. The nanofluids are prepared from halloysite nanotubes (HNTs) nanomaterials-based deionized water (DI water) with the presence of sodium hydroxide (NaOH) solution to control pH = 12 to obtain stable nanofluid. The nanofluids were prepared with dilute volume concentrations of 0.01–0.5 vol%. The performance of PBHT is studied via pool boiling curve and pool boiling heat transfer coefficient (PBHTC) from the typical heater which is the copper horizontal tube with a thickness of 1 mm and a diameter of 22 mm. The temperatures of the heated tube surface are measured to obtain the PBHTC. The results show an improvement of PBHTC for halloysite nanofluids compared to the base fluid. At 0.05 vol% concentration, HNT nanofluid has the best enhancement of 5.8% at moderate heat flux (HF). This indicates that HNT is a potential material in heat transfer applications.  相似文献   

12.
Tungsten selenide belongs to the family of inorganic compounds denominated transition metal dichalcogenides (TMDCs). There is emerging interest in these compounds in the field of optoelectronics, catalysis, sensing or energy storage, among others. Most works focus on the use of these materials in their 2D form but there is scarce research on the study of TMDCs nanomaterials with one-dimensional morphology. In this work, we explore the thermophysical properties of nanofluids based on 1D-WSe2 nanostructures with the aim of studying the feasibility of these nanofluids as heat transfer fluids in concentrating solar power plants. In this respect, nanofluids with a high heat transfer rate could increase the thermal efficiency of solar power plants, which would reduce the energy dependence on fossil fuels. Nanofluids of 0.02 wt%, 0.05 wt% and 0.10 wt% WSe2 concentrations have been prepared by the two-step method considering a thermal fluid used in solar power plants as the base fluid. The results of extinction coefficient evolution, ζ potential and particle size in suspension show a high colloidal stability over time of the prepared nanofluids mainly because of the high aspect ratio of the 1D-WSe2 nanomaterial. Additionally, the one-dimensionality and length of the synthesized nanowires favors the transport of heat in controlled directions, obtaining increases in thermal conductivity with respect to the base fluid of up to 16.8% in the highest concentration nanofluid. Improvements in isobaric specific heat of up to 15.7% and heat transfer of up to 20.8% compared to the base fluid have also been found. The results of this paper provide evidence that the presence of WSe2 nanowires induces increases in the thermal properties of the fluid commonly used in concentrating solar power plants without inducing agglomeration or sedimentation problems. Therefore, the nanofluids based on 1D-WSe2 nanostructures prepared in this work have a high potential to be used as heat transfer fluids in concentrating solar power plants based on parabolic trough collectors.  相似文献   

13.

The main purpose of this study is numerically investigating the flow and heat transfer of nanofluid flow inside a microchannel with L-shaped porous ribs as well as studying the effect of porous media properties on the performance evaluation criterion (PEC) of the fluid. In the present paper, in addition to the pure water fluid, the effect of using water/CuO nanofluid on the PEC of microchannel was investigated. The flow was simulated in four Reynolds numbers and two different volume fractions of nanoparticles in laminar flow regime. The investigated parameters are the thermal conductivity and the porosity rate of porous medium. The results indicate that with the existence of porous ribs, the nanofluid does not have a significant effect on heat transfer increase. By using porous ribs in flow with Reynolds number of 1200, the heat transfer rate increases up to 42% and in flow with Reynolds number of 100, this rate increases by 25%.

  相似文献   

14.
Thermal conductivity is an important parameter in the field of nanofluid heat transfer. This article presents a novel model for the prediction of the effective thermal conductivity of nanofluids based on dimensionless groups. The model expresses the thermal conductivity of a nanofluid as a function of the thermal conductivity of the solid and liquid, their volume fractions, particle size and interfacial shell properties. According to this model, thermal conductivity changes nonlinearly with nanoparticle loading. The results are in good agreement with the experimental data of alumina-water and alumina-ethylene glycol based nanofluids.  相似文献   

15.
PurposeThe purpose of the current framework is to scrutinize the two-dimensional flow and heat transfer of Casson nanofluid over cylinder/plate along with impacts of thermophoresis and Brownian motion effects. Also, the effects of exponential thermal sink/source, bioconvection, and motile microorganisms are taken.Methodology/ApproachThe resulting non-linear equations (PDEs) are reformed into nonlinear ODEs by using appropriate similarity variables. The resultant non-linear (ODEs) were numerically evaluated by the use of the Bvp4c package in the mathematical solver MATLAB.FindingsThe numerical and graphical illustration regarding outcomes represents the performance of flow-involved physical parameters on velocity, temperature, concentration, and microorganism profiles. Additionally, the skin friction coefficient, local Nusselt number, local Sherwood number, and local microorganism density number are computed numerically for the current presented system. We noted that the velocity profile diminishes for the rising estimations of magnetic and mixed convection parameters. The Prandtl number corresponds with the declining performance of the temperature profile observed. The enhancement in the values of the Solutal Biot number and Brownian motion parameter increased in the concentration profile.OriginalityIn specific, this framework focuses on the rising heat transfer of Casson nanofluid with bioconvection by using a shooting mathematical model. The novel approach of the presented study is the use of motile microorganisms with exponential thermal sink/source in a Casson nano-fluid through a cylinder/plate. A presented study performed first time in the author’s opinion. Understanding the flow characteristics and behaviors of these nanofluids is crucial for the scientific community in the developing subject of nanofluids.  相似文献   

16.
17.
Nanofluids can be utilized as efficient heat transfer fluids in many thermal energy systems to improve the system’s thermal efficiency. This survey reviews and summarizes the experimental and numerical studies performed to determine the effect of nanofluids on the performance of condensing and evaporating systems. Advantages and disadvantages of nanofluid implementation in condensing and evaporating systems are evaluated and summarized. Moreover, some suggestions and recommendations are presented for future studies. This review shows that the nanoparticle deposition and nanoparticle suspension are two important factors affecting the thermal system’s efficiency. These factors should be considered when using different nanofluids in condensing and evaporating systems.  相似文献   

18.

Numerical studies of laminar forced convective heat transfer and fluid flow in a 2D louvered microchannel with Al2O3/water nanofluids are performed by the lattice Boltzmann method (LBM). Eight louvers are arranged in tandem within the single-pass microchannel. The Reynolds number based on channel hydraulic diameter and bulk mean velocity ranges from 100 to 400, where the Al2O3 fraction varies from 0 to 4%. A double distribution function approach is adopted for modeling fluid flow and heat transfer. Code validations are performed by comparing the streamwise Nusselt number (Nu) profiles and Fanning friction factors of the present LBM and those of the analytical solutions. Good agreements are obtained. Simulated results show that the louver microstructure can disturb the core flow and guide coolant toward the heated walls, thus enhancing the heat transfer significantly. Furthermore, the addition of nanoparticles in microchannels can also augment the heat transfer, but it creates an unnoticeable pressure loss. With both the louver microstructure and nanofluid, a maximum overall Nu enhancement of 7.06 is found relative to that of the fully developed smooth channel.

  相似文献   

19.
The proper process of applying heat to many technological devices is a significant challenge. There are many nanofluids of different sizes used inside the system. The current study combines this potential to improve convection effects, considering numerical simulations of natural convection using Cu/water nanofluids in a square enclosure with bottom blocks embedded in baffles. The enclosure consists of two vertical walls with isothermal boundary conditions; the left wall is the sinusoidal heat source, whereas the right wall is cooled. The investigations dealt with the influences of nanoparticle concentration, Rayleigh number, baffle length, and thermal conductivity ratioon isotherms, stream functions, and average Nusselt number. The results present that, when the Rayleigh number rises, the fluid flow velocity increases, and the heat transfer improves. Furthermore, the baffle length case (Lb = 0.3) provides higher heat transfer characteristics than other baffle height cases.  相似文献   

20.

A numerical analysis was carried out of mixed convection heat transfer for a laminar flow in a rectangular inclined microchannel totally filled with a water/Al2O3 nanofluid. The governing conservation equations are translated into a dimensionless form using the thermal single relaxation time and they modify the lattice Boltzmann method with double distribution functions. The viscous dissipation effects are adapted to the energy equation. The effects of nanoparticle volume fractions ? (0?≤???≤?0.04) and inclination angles γ (0°?≤?γ?≤?60°) on the flow of the nanofluid and the heat transfer are investigated. The obtained results are presented in terms of streamlines, isotherms, slip velocity, wall temperature and Nusselt number. The results show that the higher values of the volume fraction of Al2O3 and the large values of inclination angles improve the heat transfer rate.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号