首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Discrete Mathematics》2022,345(10):113004
Let G be a graph. We say that G is perfectly divisible if for each induced subgraph H of G, V(H) can be partitioned into A and B such that H[A] is perfect and ω(H[B])<ω(H). We use Pt and Ct to denote a path and a cycle on t vertices, respectively. For two disjoint graphs F1 and F2, we use F1F2 to denote the graph with vertex set V(F1)V(F2) and edge set E(F1)E(F2), and use F1+F2 to denote the graph with vertex set V(F1)V(F2) and edge set E(F1)E(F2){xy|xV(F1) and yV(F2)}. In this paper, we prove that (i) (P5,C5,K2,3)-free graphs are perfectly divisible, (ii) χ(G)2ω2(G)?ω(G)?3 if G is (P5,K2,3)-free with ω(G)2, (iii) χ(G)32(ω2(G)?ω(G)) if G is (P5,K1+2K2)-free, and (iv) χ(G)3ω(G)+11 if G is (P5,K1+(K1K3))-free.  相似文献   

2.
3.
《Discrete Mathematics》2022,345(8):112903
Graphs considered in this paper are finite, undirected and loopless, but we allow multiple edges. The point partition number χt(G) is the least integer k for which G admits a coloring with k colors such that each color class induces a (t?1)-degenerate subgraph of G. So χ1 is the chromatic number and χ2 is the point arboricity. The point partition number χt with t1 was introduced by Lick and White. A graph G is called χt-critical if every proper subgraph H of G satisfies χt(H)<χt(G). In this paper we prove that if G is a χt-critical graph whose order satisfies |G|2χt(G)?2, then G can be obtained from two non-empty disjoint subgraphs G1 and G2 by adding t edges between any pair u,v of vertices with uV(G1) and vV(G2). Based on this result we establish the minimum number of edges possible in a χt-critical graph G of order n and with χt(G)=k, provided that n2k?1 and t is even. For t=1 the corresponding two results were obtained in 1963 by Tibor Gallai.  相似文献   

4.
I. Hambleton, L. Taylor and B. Williams conjectured a general formula in the spirit of H. Lenstra for the decomposition of Gn(RG) for any finite group G and noetherian ring R. The conjectured decomposition was shown to hold for some large classes of finite groups. D. Webb and D. Yao discovered that the conjecture failed for the symmetric group S5, but remarked that it still might be reasonable to expect the HTW-decomposition for solvable groups. In this paper we show that the solvable group SL(2,F3) is also a counterexample to the conjectured HTW-decomposition. Nevertheless, we prove that for any finite group G the rank of G1(ZG) does not exceed the rank of the expression in the HTW-decomposition. We also show that the HTW-decomposition predicts correct torsion for G1(ZG) for any finite group G. Furthermore, we prove that for any degree other than n=1 the conjecture gives a correct prediction for the rank of Gn(ZG).  相似文献   

5.
《Discrete Mathematics》2022,345(11):113058
Given an undirected graph G=(V,E), a conflict-free coloring with respect to open neighborhoods (CFON coloring) is a vertex coloring such that every vertex has a uniquely colored vertex in its open neighborhood. The minimum number of colors required for such a coloring is the CFON chromatic number of G, denoted by χON(G).In previous work [WG 2020], we showed the upper bound χON(G)dc(G)+3, where dc(G) denotes the distance to cluster parameter of G. In this paper, we obtain the improved upper bound of χON(G)dc(G)+1. We also exhibit a family of graphs for which χON(G)>dc(G), thereby demonstrating that our upper bound is tight.  相似文献   

6.
7.
8.
《Discrete Mathematics》2022,345(3):112717
A transversal set of a graph G is a set of vertices incident to all edges of G. The transversal number of G, denoted by τ(G), is the minimum cardinality of a transversal set of G. A simple graph G with no isolated vertex is called τ-critical if τ(G?e)<τ(G) for every edge eE(G). For any τ-critical graph G with τ(G)=t, it has been shown that |V(G)|2t by Erd?s and Gallai and that |E(G)|(t+12) by Erd?s, Hajnal and Moon. Most recently, it was extended by Gyárfás and Lehel to |V(G)|+|E(G)|(t+22). In this paper, we prove stronger results via spectrum. Let G be a τ-critical graph with τ(G)=t and |V(G)|=n, and let λ1 denote the largest eigenvalue of the adjacency matrix of G. We show that n+λ12t+1 with equality if and only if G is tK2, Ks+1(t?s)K2, or C2s?1(t?s)K2, where 2st; and in particular, λ1(G)t with equality if and only if G is Kt+1. We then apply it to show that for any nonnegative integer r, we have n(r+λ12)(t+r+12) and characterize all extremal graphs. This implies a pure combinatorial result that r|V(G)|+|E(G)|(t+r+12), which is stronger than Erd?s-Hajnal-Moon Theorem and Gyárfás-Lehel Theorem. We also have some other generalizations.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号