首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Discrete Mathematics》2020,343(9):111953
In this paper, we introduce Eulerian and even-face ribbon graph minors. These minors preserve Eulerian and even-face properties of ribbon graphs, respectively. We then characterize Eulerian, even-face, plane Eulerian and plane even-face ribbon graphs using these minors.  相似文献   

2.
《Discrete Mathematics》2020,343(1):111637
Huggett and Moffatt characterized all bipartite partial duals of a plane graph in terms of all-crossing directions of its medial graph. Then Metsidik and Jin characterized all Eulerian partial duals of a plane graph in terms of semi-crossing directions of its medial graph. Plane graphs are ribbon graphs with genus 0. In this paper, by introducing the notion of modified medial graphs and using their all-crossing directions, we first extend Huggett and Moffatt’s result from plane graphs to ribbon graphs. Then we characterize all Eulerian partial duals of any ribbon graph in terms of crossing-total directions of its medial graph, which are simpler than semi-crossing directions.  相似文献   

3.
In this article we consider minors of ribbon graphs (or, equivalently, cellularly embedded graphs). The theory of minors of ribbon graphs differs from that of graphs in that contracting loops is necessary and doing this can create additional vertices and components. Thus, the ribbon graph minor relation is incompatible with the graph minor relation. We discuss excluded minor characterizations of minor closed families of ribbon graphs. Our main result is an excluded minor characterization of the family of ribbon graphs that represent knot and link diagrams.  相似文献   

4.
In this article we show that any embedded graph has a checkerboard colourable twual,which is equivalent to having a bipartite twual. We also obtain that any Eulerian embedded graph has a checkerboard colourable partial Petrial, answering questions posed by Ellis-Monaghan and Moffatt[Trans. Amer. Math. Soc., 364, 1529–1569(2012)].  相似文献   

5.
We extend the Penrose polynomial, originally defined only for plane graphs, to graphs embedded in arbitrary surfaces. Considering this Penrose polynomial of embedded graphs leads to new identities and relations for the Penrose polynomial which cannot be realized within the class of plane graphs. In particular, by exploiting connections with the transition polynomial and the ribbon group action, we find a deletion–contraction-type relation for the Penrose polynomial. We relate the Penrose polynomial of an orientable chequerboard colourable graph to the circuit partition polynomial of its medial graph and use this to find new combinatorial interpretations of the Penrose polynomial. We also show that the Penrose polynomial of a plane graph GG can be expressed as a sum of chromatic polynomials of twisted duals of GG. This allows us to obtain a new reformulation of the Four Colour Theorem.  相似文献   

6.
In this paper, we study oriented bipartite graphs. In particular, we introduce “bitransitive” graphs. Several characterizations of bitransitive bitournaments are obtained. We show that bitransitive bitounaments are equivalent to acyclic bitournaments. As applications, we characterize acyclic bitournaments with Hamiltonian paths, determine the number of non-isomorphic acyclic bitournaments of a given order, and solve the graph-isomorphism problem in linear time for acyclic bitournaments. Next, we prove the well-known Caccetta-Häggkvist Conjecture for oriented bipartite graphs in some cases for which it is unsolved, in general, for oriented graphs. We also introduce the concept of undirected as well as oriented “odd-even” graphs. We characterize bipartite graphs and acyclic oriented bipartite graphs in terms of them. In fact, we show that any bipartite graph (acyclic oriented bipartite graph) can be represented by some odd-even graph (oriented odd-even graph). We obtain some conditions for connectedness of odd-even graphs. This study of odd-even graphs and their connectedness is motivated by a special family of odd-even graphs which we call “Goldbach graphs”. We show that the famous Goldbach's conjecture is equivalent to the connectedness of Goldbach graphs. Several other number theoretic conjectures (e.g., the twin prime conjecture) are related to various parameters of Goldbach graphs, motivating us to study the nature of vertex-degrees and independent sets of these graphs. Finally, we observe Hamiltonian properties of some odd-even graphs related to Goldbach graphs for a small number of vertices.  相似文献   

7.
In this paper we study a graph operation which produces what we call the “vertex envelope” GV from a graph G. We apply it to plane cubic graphs and investigate the hamiltonicity of the resulting graphs, which are also cubic. To this end, we prove a result giving a necessary and sufficient condition for the existence of hamiltonian cycles in the vertex envelopes of plane cubic graphs. We then use these conditions to identify graphs or classes of graphs whose vertex envelopes are either all hamiltonian or all non-hamiltonian, paying special attention to bipartite graphs. We also show that deciding if a vertex envelope is hamiltonian is NP-complete, and we provide a polynomial algorithm for deciding if a given cubic plane graph is a vertex envelope.  相似文献   

8.
On bipartite zero-divisor graphs   总被引:1,自引:0,他引:1  
A (finite or infinite) complete bipartite graph together with some end vertices all adjacent to a common vertex is called a complete bipartite graph with a horn. For any bipartite graph G, we show that G is the graph of a commutative semigroup with 0 if and only if it is one of the following graphs: star graph, two-star graph, complete bipartite graph, complete bipartite graph with a horn. We also prove that a zero-divisor graph is bipartite if and only if it contains no triangles. In addition, we give all corresponding zero-divisor semigroups of a class of complete bipartite graphs with a horn and determine which complete r-partite graphs with a horn have a corresponding semigroup for r≥3.  相似文献   

9.
We prove that, for a fixed bipartite circle graph H, all line graphs with sufficiently large rank‐width (or clique‐width) must have a pivot‐minor isomorphic to H. To prove this, we introduce graphic delta‐matroids. Graphic delta‐matroids are minors of delta‐matroids of line graphs and they generalize graphic and cographic matroids. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 183–203, 2009  相似文献   

10.
《Journal of Graph Theory》2018,87(4):509-515
In the paper Combinatorica 33(2) (2013) 231–252, Huggett and Moffatt characterized all bipartite partial duals of a plane graph in terms of oriented circuits in its medial graph. An open problem posed in their paper is the characterization of Eulerian partial duals of plane graphs. In this article, we solve this problem by considering half‐edge orientations of medial graphs.  相似文献   

11.
We treat zeta functions and complexities of semiregular bipartite graphs. Furthermore, we give formulas for zeta function and the complexity of a line graph of a semiregular bipartite graph. As a corollary, we present the complexity of a line graph of a complete bipartite graph.  相似文献   

12.
It has been shown by MacGillivray and Seyffarth (Austral. J. Combin. 24 (2001) 91) that bridgeless line graphs of complete graphs, complete bipartite graphs, and planar graphs have small cycle double covers. In this paper, we extend the result for complete bipartite graphs, and show that the line graph of any complete multipartite graph (other than K1,2) has a small cycle double cover.  相似文献   

13.
Let Ω denote the class of connected plane bipartite graphs with no pendant edges. A finite face s of a graph GΩ is said to be a forcing face of G if the subgraph of G obtained by deleting all vertices of s together with their incident edges has exactly one perfect matching. This is a natural generalization of the concept of forcing hexagons in a hexagonal system introduced in Che and Chen [Forcing hexagons in hexagonal systems, MATCH Commun. Math. Comput. Chem. 56 (3) (2006) 649-668]. We prove that any connected plane bipartite graph with a forcing face is elementary. We also show that for any integers n and k with n?4 and n?k?0, there exists a plane elementary bipartite graph such that exactly k of the n finite faces of G are forcing. We then give a shorter proof for a recent result that a connected cubic plane bipartite graph G has at least two disjoint M-resonant faces for any perfect matching M of G, which is a main theorem in the paper [S. Bau, M.A. Henning, Matching transformation graphs of cubic bipartite plane graphs, Discrete Math. 262 (2003) 27-36]. As a corollary, any connected cubic plane bipartite graph has no forcing faces. Using the tool of Z-transformation graphs developed by Zhang et al. [Z-transformation graphs of perfect matchings of hexagonal systems, Discrete Math. 72 (1988) 405-415; Plane elementary bipartite graphs, Discrete Appl. Math. 105 (2000) 291-311], we characterize the plane elementary bipartite graphs whose finite faces are all forcing. We also obtain a necessary and sufficient condition for a finite face in a plane elementary bipartite graph to be forcing, which enables us to investigate the relationship between the existence of a forcing edge and the existence of a forcing face in a plane elementary bipartite graph, and find out that the former implies the latter but not vice versa. Moreover, we characterize the plane bipartite graphs that can be turned to have all finite faces forcing by subdivisions.  相似文献   

14.
A graph is polar if the vertex set can be partitioned into A and B in such a way that the subgraph induced by A is a complete multipartite graph and the subgraph induced by B is a disjoint union of cliques. Polar graphs are a common generalization of bipartite, cobipartite, and split graphs. However, recognizing polar graphs is an NP-complete problem in general. This led to the study of the polarity of special classes of graphs such as cographs and chordal graphs, cf. Ekim et al. (2008) [7] and [5]. In this paper, we study the polarity of line graphs and call a graph line-polar if its line graph is polar. We characterize line-polar bipartite graphs in terms of forbidden subgraphs. This answers a question raised in the fist reference mentioned above. Our characterization has already been used to develop a linear time algorithm for recognizing line-polar bipartite graphs, cf. Ekim (submitted for publication) [6].  相似文献   

15.
Deciding whether a planar graph (even of maximum degree 4) is 3-colorable is NP-complete. Determining subclasses of planar graphs being 3-colorable has a long history, but since Grötzsch’s result that triangle-free planar graphs are such, most of the effort was focused to solving Havel’s and Steinberg’s conjectures. In this paper, we prove that every planar graph obtained as a subgraph of the medial graph of any bipartite plane graph is 3-choosable. These graphs are allowed to have close triangles (even incident), and have no short cycles forbidden, hence representing an entirely different class than the graphs inferred by the above mentioned conjectures.  相似文献   

16.
We study the family of graphs whose number of primitive cycles equals its cycle rank. It is shown that this family is precisely the family of ring graphs. Then we study the complete intersection property of toric ideals of bipartite graphs and oriented graphs. An interesting application is that complete intersection toric ideals of bipartite graphs correspond to ring graphs and that these ideals are minimally generated by Gröbner bases. We prove that any graph can be oriented such that its toric ideal is a complete intersection with a universal Gröbner basis determined by the cycles. It turns out that bipartite ring graphs are exactly the bipartite graphs that have complete intersection toric ideals for any orientation.  相似文献   

17.
给出了奇优美图和二分奇优美图的概念,并定义了金鱼图,证明了在鱼头为不同图形的情况下,金鱼图仍然是奇优美的,且是二分奇优美的.还证明了:对一个奇优美图H和一棵二分奇优美树T,用一条边连接T的一个顶点和H的标号基点u_0后所得到的金鱼图仍是奇优美图.  相似文献   

18.
We first obtain the exact value for bipartite density of a cubic line graph on n vertices. Then we give an upper bound for the bipartite density of cubic graphs in terms of the smallest eigenvalue of the adjacency matrix. In addition, we characterize, except in the case n=20, those graphs for which the upper bound is obtained.  相似文献   

19.
Motivated by a problem in communication complexity, we study cover-structure graphs (cs-graphs), defined as intersection graphs of maximal monochromatic rectangles in a matrix. We show that not every graph is a cs-graph. Especially, squares and odd holes are not cs-graphs.It is natural to look at graphs (beautiful graphs) having the property that each induced subgraph is a cs-graph. They form a new class of Berge graphs. We make progress towards their characterization by showing that every square-free bipartite graph is beautiful, and that beautiful line graphs of square-free bipartite graphs are just Path-or-Even-Cycle-of-Cliques graphs.  相似文献   

20.
证明了对于正整数k,n,si,ti(si,ti≥2,i=1,2,…,n),图n/U/i=1,Ksi,ti是k-优美图;对于正整数k,d(d≥2),k≠0(roodd)及n,si,ti(si,ti≥2,i=1,2,…,n),图n/U/i=1,Ksi,ti是(k,d)-算术图,前一结论推广了文[6]的相应结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号