首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examines structural features and aspects of reactivity of Gif-type reagents, which depend on O2/Zn to mediate oxidation of hydrocarbons. The reagents investigated derive from the use of iron complexes with the anion of the weak carboxylic acid Me3CCO2H (pivalic acid (PivH)) in pyridine/PivH. In these solutions, the known compound [Fe3O(O2CCMe3)6(py)3] is reduced by Zn to generate yellow-green [FeII(O2CCMe3)2(py)4], which readily reverts to [Fe3O(O2CCMe3)6(py)3], and eventually to [Fe3O(O2CCMe3)6(py)3]+, upon exposure to dioxygen. All three species are equally well suited to mediate Gif-like oxygenation of substrates supported by O2/Zn. [FeIII3O(O2CCMe3)6(L)3]+ (L = H2O, py) is converted by H2O2 to afford the hexairon(III) peroxo compounds [Fe6(O2)(O)2(O2CCMe3)12(L)2] (L = Me3CCO2H, py), which feature a [Fe6(eta 2-mu 4-O2)(mu 3-O)2] core previously documented in the closely related [Fe6(O2)(O)2(O2CPh)12(H2O)2]. A similar peroxo species, [Fe6(O2)(O)2(O2CCMe3)2(O2CCF3)10(H2O)2], is obtained upon replacing all pivalate ligands by trifluoroacetate groups with the exception of those pivalates that bridge between the two [Fe3O(O2CCF3)5(H2O)]2+ units. The structure of the [Fe6(O2)(O)2] core in these peroxo species is found to range from a recliner to a butterfly-type conformation. Reduction of [Fe6(O2)(O)2(O2CCMe3)12(HO2CCMe3)2] with NaBH4 generates [Na2Fe4(O)2(O2CCMe3)10(L)(L')] (L = CH3CN, L' = Me2CO; L = L' = Me3CCO2H), which feature a [Na2Fe4(O)2] core possessing a bent butterfly conformation of the [Fe4(O)2] unit. Oxidation of the same peroxo complex by CeIV or NOBF4 regenerates the oxo-bridged [Fe3O(O2CCMe3)6(solv)3]+ (solv = EtOH, H2O, thf). Employment of the sterically encumbered 2-Me-5-Etpyridine provides the tetrairon compound [Fe4(O)2(O2CCMe3)8(2-Me-5-Etpy)2], which can be readily transformed upon treatment with H2O2 to the asymmetric peroxo complex [Fe6(O2)(O)2(O2CCMe3)12(2-Me-5-Etpy)2]. The peroxo-containing complexes oxidize both cis-stilbene and adamantane in either benzene or py/PivH, but only under forceful conditions and at very low yields. The low reactivity and high selectivity (tert/sec = 8) obtained in the oxidation of adamantane suggests that the present type of peroxo species is not directly involved in catalytic Gif-type oxygenations of adamantane.  相似文献   

2.
Three new phosphonic acid ligands (4- (t)butylphenyl phosphonic acid, 3,5-dimethylphenyl phosphonic acid, and diphenylmethylphosphonic acid) have been synthesized and employed in search of high molecularity iron(III) clusters. The cluster compounds are characterized by single crystal X-ray diffraction and magnetic measurements. The solvothermal reaction of FeCl 3.6H 2O with diphenylacetic acid and p- (t)butylphenyl phosphonic acid resulted in an unprecedented dodecanuclear cluster [Fe 12(mu 2-O) 4(mu 3-O) 4(O 2CCHPh 2) 14(4- (t)buPhPO 3H) 6]( 1) having a double butterfly like core structure. [Fe 12(mu 2-O) 4(mu 3-O) 4(O 2CPh) 14(C 10H 17PO 3H) 6]( 2), another dodecanuclear cluster having core structure similar to 1, has been synthesized in a reaction between [Fe 3O(O 2CPh) 6(H 2O) 3]Cl and camphylphosphonic acid in the presence of triethylamine at ambient condition. 3,5-Dimethylphenyl phosphonic acid on reacting solvothermally with an oxo-centered iron triangle [Fe 3O(O 2CCMe 3) 6(H 2O) 3]Cl gives a nonanuclear cluster [Fe 9(mu 3-O) 4(O 3PPh(Me) 2) 3(O 2CCMe 3) 13]( 3) having icosahedral type core structure where three positions of the iron atoms have been replaced by phosphorus. Another nonanuclear [Fe 9(O) 3(OH) 3(O 3PCHPh 2) 6(O 2CCMe 3) 6(H 2O) 9] ( 4), having a distorted cylindrical core structure, has been synthesized in a similar solvothermal reaction between [Fe 3O(O 2CCMe 3) 6(H 2O) 3]Cl and biphenylmethyl phosphonic acid. All compounds are characterized by IR spectra, elemental analysis, as well as single crystal X-ray analysis. Magnetic measurements for all the compounds reveal that there are antiferromagnetic interactions between the metal centers.  相似文献   

3.
The synthesis and magnetic properties of the high-spin tetranuclear cluster [Mn(III)(2)Mn(II)(2)(O(2)CC(CH(3))(3))(2)(teaH(2))(2)(teaH)(2)](O(2)CC(CH(3))(3))(2) (1) (where teaH(3) = triethanolamine) is described. Complex 1 is the pivalate analogue of our previously reported family of tetranuclear mixed-valence carboxylate clusters. The teaH(2)(-) and teaH(2-) anions in complex 1 act as oxygen donors in the {Mn(III)(2)Mn(II)(2)O(2)} "butterfly" core. Detailed dc and ac magnetic susceptibility measurements and magnetisation isotherms have been made and show that intra-cluster ferromagnetic coupling is occurring between the S = 2 Mn(III) and S = 5/2 Mn(II) ions to yield a S = 9 ground state and the g, J(bb) and J(wb) parameters have been deduced (b = body, w = wingtip). Incorporation of the acetylacetonate (acac(-)) ligand has led to three new clusters: [Mn(III)(2)Mn(II)(2)(O(2)CPh)(4)(teaH)(2)(acac)(2)].MeCN (2), [Mn(III)(2)Mn(II)(2)(teaH)(2)(acac)(4)(MeOH)(2)](ClO(4))(2) (3) and [Mn(III)(2)Mn(II)(2)(bheapH)(2)(acac)(4)(MeOH)(2)](ClO(4))(2) (4) (where bheapH(3) = 1-[N,N-bis(2-hydroxyethyl)amino]-2-propanol). Unlike any previously reported tetranuclear clusters containing the Mn(II)(2)Mn(III)(2) core, 2, 3, and 4 exhibit a reversal in their Mn(II)(2)Mn(III)(2) oxidation state distribution. In these clusters, the "wing-tip" Mn atoms exhibit Mn(III) (S = 2) oxidation states while the Mn(II) ions occupy the central "body" positions. Furthermore, the cores in 2, 3, and 4 contain at least one mu(2)-oxygen based bridging ion as opposed to the standard two mu(3)-oxygen bridges previously reported. More precisely, cluster 2 exhibits one mu(3)-O bridge and two mu(2)-bridges in a {Mn(II)(2)Mn(III)(2)O(3)} core while clusters 3 and 4 exhibit two mu(2)-O linkers within the {Mn(II)(2)Mn(III)(2)O(2)} core. All display trigonal prismatic coordination around the Mn(II) centres. These structural and oxidation state differences lead to very different magnetic coupling interactions between the four Mn(II/III) centres compared to 1. Direct current magnetic susceptibility measurements and magnetisation isotherms show that clusters 3 and 4 have ground states of S = 1. The g, J(bb) and J(wb) parameters have been deduced.  相似文献   

4.
The reaction of phenylphosphonic acid (PhPO(3)H(2)) with the mixed-valent basic oxo-centered manganese triangle [Mn(3)O(O(2)CCMe(3))(6)(py)(3)] (1; where py=pyridine) in the presence of a suitable base gives four different manganese clusters depending on the identity of the base. The syntheses and structural characterization of [Mn(18)(mu(3)-O)(8)(PhPO(3))(14)(O(2)CCMe(3))(12)(py)(6)(H(2)O)(2)] (2), [Mn(7)(mu(3)-O)(3)(O(3)PPh)(3)(O(2)CCMe(3))(8)(py)(3)] (3), [Mn(9)Na(mu(3)-O)(4)(mu(4)-O)(2)(O(3)PPh)(2)(O(2)CCMe(3))(12)(H(2)O)(2)(H(2)O)(0.67)(Py)(0.33)] (4), and [Mn(13)(mu(3)-O)(8)(OMe)(8)(O(3)PPh)(4)(O(2)CCMe(3))(10)] (5) are described. Complexes 4 and 5 are homovalent Mn(III) cages, while 2 and 3 contain divalent, trivalent, and/or tetravalent ions. All the manganese centers are valence-localized, the octahedral Mn(III) sites being recognizable by marked Jahn-Teller distortions. The magnetic properties of compounds 2-5 have been investigated in the polycrystalline state by magnetic susceptibility and high-field magnetization measurements, which reveal that spin ground states vary from 0< or =S > or =8. AC susceptibility measurements performed on 4 and 5, in the 1.6-10.0 K ranges show the presence of out of AC susceptibility signal (chi(M)') for 4, and an effective energy barrier (U(eff)) for the re-orientation of the magnetization is found to be 17 K, but for 5, the chi(M)' maximum is found to be below 1.5 K.  相似文献   

5.
The use has been explored of both azide (N3-) and alkoxide-containing groups such as the anions of 2-(hydroxymethyl)pyridine (hmpH), 2,6-pyridinedimethanol (pdmH2), 1,1,1-tris(hydroxymethyl)ethane (thmeH3) and triethanolamine (teaH3) in Mn cluster chemistry. The 1:1:1:1 reactions of hmpH, NaN3 and NEt3 with Mn(ClO4)(2).6H 2O or Mn(NO3)2.H2O in MeCN/MeOH afford [MnII4MnIII6O4(N3)4(hmp)12](X)2 [X=ClO4- (1), N3- (2)]. The [Mn10(mu4-O) 4(mu3-N3)4]14+ core of the cation has a tetra-face-capped octahedral topology, with a central MnIII6 octahedron, whose eight faces are bridged by four mu 3-N3- and four mu 4-O2- ions, the latter also bridging to four extrinsic MnII atoms. The core has Td symmetry, but the complete [MnII4MnIII6O4(N3)4(hmp)12]2+ cation has rare T symmetry, which is crystallographically imposed. A similar reaction of Mn(ClO4) (2).6H2O with one equiv each of NaN3, thmeH3, pdmH2, and NEt3 in MeCN/MeOH led to [MnII4MnIII6O2(N3)6(pdmH)4(thme)4] (3). Complex 3 is at the same oxidation level as 1/2 but its core is structurally different, consisting of two edge-fused [MnII2MnIII4(mu4-O)]14+ octahedra. Replacement of thmeH3 with teaH3 in this reaction gave instead [MnII2MnIII2(N3)4(pdmH)2(teaH)2] (4), containing a planar Mn 4 rhombus. Variable-temperature, solid-state dc and ac magnetization studies were carried out on 1-4 in the 5.0-300 K range. Complexes 1 and 2 are completely ferromagnetically coupled with a resulting S=22 ground state, one of the highest yet reported. Fits of dc magnetization vs field (H) and temperature (T) data by matrix diagonalization gave S=22, g=2.00, and D approximately 0.0 cm(-1) (D is the axial zero-field splitting parameter). In contrast, the data for 3 revealed dominant antiferromagnetic interactions and a resulting S=0 ground state. Complex 4 contains weakly ferromagnetically coupled Mn atoms, leading to an S=9 ground-state and low-lying excited states, and exhibits out-of-phase ac susceptibility signals characteristic of a single-molecule magnet. Theoretical values of the exchange constants in 1 obtained with density functional theory and ZILSH calculations were in good agreement with experimental values. The combined work demonstrates the synthetic usefulness of alcohol-based chelates and azido ligands when used together, and the synthesis in the present work of two "isomeric" MnIII6MnII4 cores that differ in spin by a remarkable 22 units.  相似文献   

6.
The synthesis and magnetic properties of the compounds [HNEt(3)][Fe(2)(OMe)(Ph-sao)(2) (Ph-saoH)(2)].5MeOH (1.5MeOH), [Fe(3)O(Et-sao)(O(2)CPh)(5)(MeOH)(2)].3MeOH (2.3MeOH), [Fe(4)(Me-sao)(4)(Me-saoH)(4)] (3), [HNEt(3)](2)[Fe(6)O(2)(Me-sao)(4)(SO(4))(2)(OMe)(4)(MeOH)(2)] (4), [Fe(8)O(3)(Me-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (5), [Fe(8)O(3)(Et-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (6), and [Fe(8)O(3)(Ph-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (7) are reported (Me-saoH(2) is 2'-hydroxyacetophenone oxime, Et-saoH(2) is 2'-hydroxypropiophenone oxime and Ph-saoH(2) is 2-hydroxybenzophenone oxime). 1-7 are the first Fe(III) compounds synthesised using the derivatised salicylaldoxime ligands, R-saoH(2). 1 is prepared by treatment of Fe(2)(SO(4))(3).6H(2)O with Ph-saoH(2) in the presence of NEt(3) in MeOH; 2 prepared by treatment of Fe(ClO(4))(2).6H(2)O with Et-saoH(2) and NaO(2)CPh in the presence of NEt(4)OH in MeOH; 3 prepared by treatment of Fe(ClO(4))(2).6H(2)O with Me-saoH(2) and NaO(2)CCMe(3) in the presence of NEt(4)OH in MeOH; and 4 prepared by treatment of Fe(2)(SO(4))(3).6H(2)O with Me-saoH(2) in the presence of NEt(3) in MeOH. 4 is a rare example of a polynuclear iron complex containing a coordinated SO(4)(2-) ion. Compounds 5-7 are prepared by treatment of Fe(O(2)CMe)(2) with Me-saoH(2) (5), Et-saoH(2) (6), Ph-saoH(2) (7) in the presence of H(3)tea (triethanolamine) in MeOH, and represent the largest nuclearity Fe(III) clusters containing salicyladoxime-based ligands, joining a surprisingly small family of characterised octanuclear Fe complexes. Variable temperature magnetic susceptibilty measurements of 1, 3 and 5-7 reveal all five complexes possess S = 0 spin ground states; 2 possesses an S = 1/2 spin ground state, while 4 has an S = 4 +/- 1 spin ground state.  相似文献   

7.
Zhu AX  Zhang JP  Lin YY  Chen XM 《Inorganic chemistry》2008,47(16):7389-7395
The self-assembly of Zn(II) and Cd(II) ions with a bis-bidentate ligand 3,5-bis(benzimidazol-2-yl)pyrazole (H 3L) was studied by Electrospray ionization mass spectrometry, (1)H NMR measurements, and single-crystal X-ray diffraction analyses. Reaction of Zn(ClO 4) 2.6H 2O and Cd(ClO 4) 2.6H 2O with H 3L in DMF gave two pentanuclear complexes [(Zn 5(mu 3-O)(H 2L) 6)(ClO 4) 2.DMF.9.5H 2O ( 1) and [Cd 5(mu 3-O)(H 2L) 6](ClO 4)(OH).4.75DMF.0.25EtOH.10.5H 2O ( 2), in which the trigonal-bipyramidal core structures are bridged by mu 3-oxo and pyrazolate rings of the monodeprotonated H 2L. When Na 3PO 4.12H 2O was used in the reaction system of CdBr 2.4H 2O and H 3L, [Cd 5(mu 3-O)(H 2L) 6]Br 2.4.5DMF.6.5H 2O ( 3) and [Cd 7(mu 6-PO 4)(mu-Br) 3(H 2L) 6](HPO 4).DMF.10H 2O ( 4) were isolated. 3 displays the same core structure as that of 2, whereas 4 exhibits a turbinate, heptanuclear core which is bridged by a mu 6-PO 4, three mu-Br, and three pyrazolate rings. All of the pentanuclear and heptanuclear cores are surrounded by three pairs of bis-bidentate H 2L (-) ligands with offset pi-pi stacking, showing propeller-like molecular structures and triple-stand helicates. Electrospray ionization mass spectrometry studies and (1)H NMR measurements demonstrate that the pentanuclear complexes have different stability in the solution, depending on the metal ions and the counteranions. Furthermore, both 1 and 2 emit blue fluorescence with nanosecond luminescent lifetimes in DMF at room temperature.  相似文献   

8.
A family of triethanolamine complexes of titanium with varying metal/ligand ratios have been prepared from reactions of titanium tetraisopropoxide with triethanolamine. Three nonhydrolytic products, having essentially all isopropoxide ligands substituted by triethanolamine, were prepared as hygroscopic, glassy solids. Crystals of two hexameric titanatrane partial hydrolysis analogues [Ti3(mu 2-O)((HOCH2CH2)2NCH2CH2O)(OCH2CH2)2(mu 2-OCH2CH2)N)2(OCH2CH2)(mu 2- OCH2CH2)2N)]2 (1), and [Ti3(mu 2-O)(OCH(CH3)2)((OCH2CH2)2(mu 2-OCH2CH2)N)2(OCH2CH2)(mu 2- OCH2CH2)2N)]2 (2) were isolated and structurally characterized. The structures consist of a central core of two oxo-bridged dititanatranes (TEA)TiOTi(TEA) (TEAH3 = triethanolamine) with the nonhydrolytic residue (TEA)Ti(TEAH2) included as an adduct in (1), analogously to (TEA)Ti(OPri) in (2).  相似文献   

9.
The synthesis, structures and magnetic properties of two new mixed-valence heptanuclear manganese clusters are described. Both complexes utilize triethanolamine (teaH(3)) as a bridging ligand, displaying near planar, disc-like metal topologies and are of formulae [Mn(II)(4)Mn(IV)(3)(tea)(teaH(2))(3)(peolH)(4)](BF(4))(2)·solv (1) and [Mn(II)(4)Mn(III)(3)F(3)(tea)(teaH)(teaH(2))(2)(piv)(4)(Hpiv)(chp)(3)]·0.5MeCN (2). Compound 1 is a rare mixed-valence compound containing Mn(II) and Mn(IV) ions only and is the first example of a heptanuclear disc with a {Mn(II)(4)Mn(IV)(3)} oxidation state distribution. Compound 2 is a {Mn(II)(4)Mn(III)(3)} complex and displays a unique arrangement of oxidation states within the disc, when compared to other known {Mn(II)(4)Mn(III)(3)} examples. Variable temperature DC and AC magnetic susceptibility studies were carried out for 1 and 2 in the 2-300 K temperature range. Compound 1 displayed an increase in the χ(M)T susceptibility values as the temperature is decreased indicating dominant ferromagnetic interactions are present within the cluster. Fits of the χ(M)T vs. T data reveals an S = 23/2 ground state, with several close lying excited states within 1 cm(-1). Compound 2 displays an overall decrease in the χ(M)T value as the temperature is decreased down to 2 K indicating dominant antiferromagnetic interactions present with a probable S = 4 ground state as determined from the DC and AC susceptibility data.  相似文献   

10.
The synthesis and characterisation of three new mixed-valent manganese clusters [Mn(II)?Mn(III)??O??(OH)?(tea)?(chp)?]·6MeOH·4H?O (1), [Mn(II)?Mn(III)?(teaH)?(teaH?)?(tpaa)?(F)?]·2Et?O·4MeCN (2) and [Mn(II)?Mn(III)?(teaH)?(teaH?)?(2-bpca)?(F)?]·4MeCN (3) are reported. They were obtained by the reaction of simple manganese salts with triethanolamine (teaH?), triethylamine (NEt?) and the appropriate co-ligand. In the case of 1, 6-chloro-2-hydroxypyridine (Hchp) was used, for 2, triphenylacetic acid (tpaa) and 3, 2-biphenylcarboxylic acid (2-bpca). The core of 1 is a Mn?? supertetrahedron, while the cores of 2 and 3 are identical and have distorted ring-like topologies. Variable-temperature, solid-state DC and AC magnetic studies were performed on 1-3 in the 2-300 K (DC) and 2-18 K (AC) ranges. Cluster 1 has a S = 9 ground state with excited S states, larger in value than 9, close in energy. No SMM features were apparent in 1. In contrast, clusters 2 and 3, with S = 12 or 13 ground states, and with excited S levels of lower value than 12 lying close in energy, do show SMM features, albeit below 2 K in their AC out-of-phase, frequency dependent data.  相似文献   

11.
The reaction between MnBr(2).4H(2)O with H(3)tmp (1,1,1-tris(hydroxymethyl)propane) in MeCN in the presence of Na(O(2)CCMe(3)) and NBu(4)Br produces the complex [Mn(8)(O(2)CCMe(3))(2)(tmp)(2)(Htmp)(4)Br(4)(H(2)O)(2)].2MeCN (1.2MeCN) in good yield. The centrosymmetric octanuclear molecule consists of four Mn(III) and four Mn(II) ions assembled together by fourteen alkoxo bridges to give a [Mn(III)(4)Mn(II)(4)(mu(3)-OR)(6)(mu(2)-OR)(8)](6+) rod-like core in which the metal centres are arranged in a planar zigzag fashion. Peripheral ligation is provided by a combination of bridging pivalate ions, terminal bromides and water molecules. Dc magnetic susceptibility measurements reveal the presence of dominant antiferromagnetic interactions leading to a spin ground state of S = 0. A rationalization of this result is attempted by structural comparison with previously reported tetranuclear manganese complexes containing the [Mn(III)(2)Mn(II)(2)(mu(3)-OR)(2)(mu(2)-OR)(4)] core in which the magnetic interactions are ferromagnetic.  相似文献   

12.
Synthetic methods are described that have resulted in the formation of seven heterometallic complexes, all of which contain partially deprotonated forms of the ligand triethanolamine (teaH(3)). These compounds are [Mn(III)(4)Co(III)(2)Co(II)(2)O(2)(teaH(2))(2)(teaH)(0.82)(dea)(3.18)(O(2)CMe)(2)(OMe)(2)](BF(4))(2)(O(2)CMe)(2)·3.18MeOH·H(2)O (1), [Mn(II)(2)Mn(III)(2)Co(III)(2)(teaH)(4)(OMe)(2)(acac)(4)](NO(3))(2)·2MeOH (2), [Mn(III)(2)Ni(II)(4)(teaH)(4)(O(2)CMe)(6)]·2MeCN (3), [Mn(III)(2)Co(II)(2)(teaH)(2)(sal)(2)(acac)(2)(MeOH)(2)]·2MeOH (4), [Mn(II)(2)Fe(III)(2)(teaH)(2)(paa)(4)](NO(3))(2)·2MeOH·CH(2)Cl(2) (5), [Mn(II)Mn(III)(2)Co(III)(2)O(teaH)(2)(dea)(Iso)(OMe)(F)(2)(Phen)(2)](BF(4))(NO(3))·3MeOH (6) and [Mn(II)(2)Mn(III)Co(III)(2)(OH)(teaH)(3)(teaH(2))(acac)(3)](NO(3))(2)·3CH(2)Cl(2) (7). All of the compounds contain manganese, combined with 3d transition metal ions such as Fe, Co and Ni. The crystal structures are described and examples of 'rods', tetranuclear 'butterfly' and 'triangular' Mn(3) cluster motifs, flanked in some cases by diamagnetic cobalt(III) centres, are presented. Detailed DC and AC magnetic susceptibility and magnetization studies, combined with spin Hamiltonian analysis, have yielded J values and identified the spin ground states. In most cases, the energies of the low-lying excited states have also been obtained. The features of note include the 'inverse butterfly' spin arrangement in 2, 4 and 5. A S = 5/2 ground state occurs, for the first time, in the Mn(III)(2)Mn(II) triangular moiety within 6, the many other reported [Mn(3)O](6+) examples having S = ? or 3/2 ground states. Compound 7 provides the first example of a Mn(II)(2)Mn(III) triangle, here within a pentanuclear Mn(3)Co(2) cluster.  相似文献   

13.
Five Co(II) silicotungstate complexes are reported. The centrosymmetric heptanuclear compound K(20)[{(B-beta-SiW(9)O(33)(OH))(beta-SiW(8)O(29)(OH)(2))Co(3)(H(2)O)}(2)Co(H(2)O)(2)]47 H(2)O (1) consists of two {(B-beta-SiW(9)O(33)(OH))(beta-SiW(8)O(29)(OH)(2))Co(3)(H(2)O)} units connected by a {CoO(4)(H(2)O)(2)} group. In the chiral species K(7)[Co(1.5)(H(2)O)(7))][(gamma-SiW(10)O(36))(beta-SiW(8)O(30)(OH))Co(4)(OH)(H(2)O)(7)]36 H(2)O (2), a {gamma-SiW(10)O(36)} and a {beta-SiW(8)O(30)(OH)} unit enclose a mononuclear {CoO(4)(H(2)O)(2)} group and a {Co(3)O(7)(OH)(H(2)O)(5)} fragment. The two trinuclear Co(II) clusters present in 1 enclose a mu(4)-O atom, while in 2 a mu(3)-OH bridging group connects the three paramagnetic centers of the trinuclear unit, inducing significantly larger Co-L-Co (L=mu(4)-O (1), mu(3)-OH (2)) bridging angles in 2 (theta(av(Co-L-Co))=99.1 degrees ) than in 1 (theta(av(Co-L-Co))=92.8 degrees ). Weaker ferromagnetic interactions were found in 2 than in 1, in agreement with larger Co-L-Co angles in 2. The electrochemistry of 1 was studied in detail. The two chemically reversible redox couples observed in the positive potential domain were attributed to the redox processes of Co(II) centers, and indicated that two types of Co(II) centers in the structure were oxidized in separate waves. Redox activity of the seventh Co(II) center was not detected. Preliminary experiments indicated that 1 catalyzes the reduction of nitrite and NO. Remarkably, a reversible interaction exists with NO or related species. The hybrid tetranuclear complexes K(5)Na(3)[(A-alpha-SiW(9)O(34))Co(4)(OH)(3)(CH(3)COO)(3)]18 H(2)O (3) and K(5)Na(3)[(A-alpha-SiW(9)O(34))Co(4)(OH)(N(3))(2)(CH(3)COO)(3)]18 H(2)O (4) were characterized: in both, a tetrahedral {Co(4)(L(1))(L(2))(2)(CH(3)COO)(3)} (3: L(1)=L(2)=OH; 4: L(1)=OH, L(2)=N(3)) unit capped the [A-alpha-SiW(9)O(34)](10-) trivacant polyanion. The octanuclear complex K(8)Na(8)[(A-alpha-SiW(9)O(34))(2)Co(8)(OH)(6)(H(2)O)(2)(CO(3))(3)]52 H(2)O (5), containing two {Co(4)O(9)(OH)(3)(H(2)O)} units, was also obtained. Compounds 2, 3, 4, and 5 were less stable than 1, but their partial electrochemical characterization was possible; the electronic effect expected for 3 and 4 was observed.  相似文献   

14.
Synthesis, crystal structures and magnetic studies are reported for four new heterometallic Cu(II)-Ln(III) clusters. The reaction of Cu(NO(3))(2)·3H(2)O with triethanolamine (teaH(3)), pivalic acid, triethylamine and Ln(NO(3))(3)·6H(2)O (Ln=Gd, Tb, Dy and Ho) results in the formation of four isostructural nonanuclear complexes of general formula [Cu(II)(5)Ln(III)(4)O(2)(teaH)(4){O(2)CC(CH(3))(3)}(2)(NO(3))(4)(OMe)(4)]·2MeOH·2Et(2)O [Ln=Gd (1), Tb (2), Dy (3) and Ho (4)]. The metal core of each cluster is made up of four face- and vertex-sharing tetrahedral units. Solid-state DC magnetic susceptibility studies reveal competing anti- and ferromagnetic interactions within each cluster leading to large-spin ground states for 1-4. Solid-state AC magnetic susceptibility studies show frequency-dependent out-of-phase (χ'(M)) signals for 2-4 below 4 K, suggestive of single-molecule magnet behaviour. Ab initio calculations on one of the anisotropic examples (3) provided a rare set of J values for Dy-Cu and Cu-Cu exchange interactions (Dy-Dy zero), some ferro- and some antiferromagnetic in character, that explain its magnetic behaviour.  相似文献   

15.
Wang X  Sheng TL  Fu RB  Hu SM  Xiang SC  Wang LS  Wu XT 《Inorganic chemistry》2006,45(14):5236-5238
Reaction of [Cu(PPh3)2(MeCN)2]ClO4 (1) and Sn(edt)2 (edt = ethane-1,2-dithiolate) in dichloromethane afforded a novel compound [Sn3Cu4(S2C2H4)6(mu3-O)(PPh3)4](ClO4)2 x 3 CH2Cl2 (2), which is the first example of the heptanuclear Sn(IV)-Cu(I) oxosulfur complex with a bottle-shaped cluster core. Complex 2 gives a blue-green luminescent emission in the solid state. Crystallographic data for 2: C87H90Cl8Cu4O9P4S12Sn3, trigonal, space group R3, M = 2682.02, a = 18.156(2) A, b = 18.156(2) A, c = 54.495(10) A, gamma = 120 degrees, V = 15558(4) A3, Z = 6 (T = 130.15 K).  相似文献   

16.
Reaction of nickel(II) acetate with H(3)L (2-(5-bromo-2-hydroxyphenyl)-1,3-bis[4-(5-bromo-2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) yields [Ni(2)L(OAc)(H(2)O)(2)].3MeCN.2H(2)O (1.3MeCN.2H(2)O), crystallographically characterized. 1 is unstable in solution for a long time and hydrolyzes to give [Ni(2)L(o-OC(6)H(3)BrCHO)(H(2)O)].2.25MeCN.H(2)O (2.2.25MeCN.H(2)O). In addition, 1 uptakes CO(2) from air in a basic methanol/acetonitrile solution, yielding [[Ni(2)L(MeOH)](2)(CO(3))].1.5MeOH.MeCN.H(2)O (3.1.5MeOH.MeCN.H(2)O). The X-ray characterization of 3 reveals that it is a tetranuclear nickel cluster, which can be considered as the result of a self-assembly process from two dinuclear [Ni(2)L](+) blocks, joined by a mu(4)-eta(2):eta(2)-O,O carbonate ligand. The coordination mode of the carbonate anion is highly unusual and, to the best of our knowledge, it has not been described thus far for first-row transition metal complexes or magnetically studied until now. Magnetic characterization of 1 and 3 shows net intramolecular ferromagnetic coupling between the metal atoms in both cases, with S = 2 and S = 4 ground states for 1 and 3, respectively.  相似文献   

17.
Wang M  Ma CB  Yuan DQ  Wang HS  Chen CN  Liu QT 《Inorganic chemistry》2008,47(13):5580-5590
A family of manganese complexes, [Mn 5O 3( t-BuPO 3) 2(MeCOO) 5(H 2O)(phen) 2] ( 1), [Mn 5O 3( t-BuPO 3) 2(PhCOO) 5(phen) 2] ( 2), [Mn 4O 2( t-BuPO 3) 2(RCOO) 4(bpy) 2] (R = Me, ( 3); R = Ph, ( 4)), NBu (n) 4[Mn 4O 2(EtCOO) 3(MeCOO) 4(pic) 2] ( 5), NR' 4[Mn 4O 2( i-PrCOO) 7(pic) 2] (R' = Bu (n) , ( 6); R' = Et, ( 7)), were synthesized and characterized. The seven manganese clusters were all prepared from a reaction system containing tert-butylphosphonic acid, Mn(O 2CR) 2 (R = Me, Ph) and NR' 4MnO 4 (R' = Bu (n) , Et) with similar procedures except for using different N-containing ligands (1,10-phenanthroline (phen), 2,2'-bipyridine (bpy) and picolinic acid (picH)) as coligands. The structures of these complexes vary with the N-containing donors. Both the cores of complexes 1 and 2 feature three mu 3-O and two capping t-BuPO 3 (2-) groups bridging five Mn (III) atoms to form a basket-like cage structure. Complexes 3 and 4 both have one [Mn 4(mu 3-O) 2] (8+) core with four coplanar Mn (III) atoms disposed in an extended "butterfly-like" arrangement and two capping mu 3- t-BuPO 3 (2-) binding to three manganese centers above and below the Mn 4 plane. Complexes 5, 6, and 7 all possess one [Mn 4(mu 3-O) 2] (8+) core just as complexes 3 and 4, but they display a folded "butterfly-like" conformation with the four Mn (III) atoms nonplanar. Thus, the seven compounds are classified into three types, and three representative compounds 1.2H 2O.MeOH.MeCN , 3.6H 2O.2MeCOOH , and 5.0.5H 2O have been characterized by IR spectroscopy, ESI-MS spectroscopy, magnetic measurements and in situ UV-vis-NIR spectroelectrochemical analysis. Magnetic susceptibility measurements reveal the existence of both ferromagnetic and antiferromagnetic interactions between the adjacent Mn (III) ions in compound 1.2H 2O.MeOH.MeCN , and antiferromagnetic interactions in 3.6H 2O.2MeCOOH and 5.0.5H 2O. Fitting the experimental data led to the following parameters: J 1 = -2.18 cm (-1), J 2 = 6.93 cm (-1), J 3 = -13.94 cm (-1), J 4 = -9.62 cm (-1), J 5 = -11.17 cm (-1), g = 2.00 ( 1.2H 2O.MeOH.MeCN ), J 1 = -5.41 cm (-1), J 2 = -35.44 cm (-1), g = 2.13, zJ' = -1.55 cm (-1) ( 3.6H 2O.2MeCOOH ) and J 1 = -2.29 cm (-1), J 2 = -35.21 cm (-1), g = 2.02, zJ' = -0.86 cm (-1) ( 5.0.5H 2O ).  相似文献   

18.
The syntheses, crystal structures, and magnetochemical characterization of four new iron clusters [Fe7O4(O2CPh)11(dmem)2] (1), [Fe7O4(O2CMe)11(dmem)2] (2), [Fe6O2(OH)4(O2CBut)8(dmem)2] (3), and [Fe3O(O2CBut)2(N3)3(dmem)2] (4) (dmemH=Me2NCH2CH2N(Me)CH2CH2OH)=2-{[2-(dimethylamino)ethyl]methylamino}ethanol) are reported. The reaction of dmemH with [Fe3O(O2CR)6(H2O)3](NO3) (R=Ph (1), Me (2), and But (3)) gave 1, 2, and 3, respectively, whereas 4 was obtained from the reaction of 3 with sodium azide. The complexes all possess rare or novel core topologies. The core of 1 comprises two [Fe4(mu3-O)2]8+ butterfly units sharing a common body Fe atom. The core of 2 consists of a [Fe3O3] ring with each doubly bridging O2- ion becoming mu3 by also bridging to a third, external Fe atom; a seventh Fe atom is attached on the outside of this core via an additional mu3-O2- ion. The core of 3 consists of a [Fe4(mu3-O)2]8+ butterfly unit with an Fe atom attached above and below this by bridging O atoms. Finally, the core of 4 is an isosceles triangle bridged by a mu3-O2- ion with a rare T-shaped geometry and with the azide groups all bound terminally. Variable-temperature, solid-state dc, and ac magnetization studies were carried out on complexes 1-4 in the 5.0-300 K range. Fitting of the obtained magnetization (M) vs field (H) and temperature (T) data by matrix diagonalization and including only axial anisotropy (zero-field splitting) established that 1, 2, and 4 each possess an S=5/2 ground state spin, whereas 3 has an S=5 ground state. As is usually the case, good fits of the magnetization data could be obtained with both positive and negative D values. To obtain more accurate values and to determine the sign of D, high-frequency EPR studies were carried out on single crystals of representative complexes 1.4MeCN and 3.2MeCN, and these gave D=+0.62 cm-1 and |E|>or=0.067 cm-1 for 1.4MeCN and D=-0.25 cm-1 for 3.2MeCN. The magnetic susceptibility data for 4 were fit to the theoretical chiM vs T expression derived by the use of an isotropic Heisenberg spin Hamiltonian and the Van Vleck equation, and this revealed the pairwise exchange parameters to be antiferromagnetic with values of Ja=-3.6 cm-1 and Jb=-45.9 cm-1. The combined results demonstrate the ligating flexibility of dmem and its usefulness in the synthesis of a variety of Fex molecular species.  相似文献   

19.
The synthesis, crystal structures and magnetic properties of two hexanuclear Fe(6) clusters of general formula [Fe(6)(O)(2)(OH)(2)(O(2)CR)(10)(dipaH(2))(2)].xMeCN.yH(2)O (R = Ph, x= 5.5, y= 1 (1), R = C(Me)(3), x= 2, y= 3 (2)) are reported. The presence of the flexible amino-alcohol ligand diisopropanolamine (dipaH(3)) induces the dimerisation of two trinuclear Fe(III) complexes, [Fe(3)O(O(2)CPh)(6)(H(2)O)(3)](NO(3)) and [Fe(3)O(O(2)CC(Me)(3))(6)(H(2)O)(3)](O(2)CC(Me)(3)), to form the hexanuclear clusters 1 and 2. DC magnetic susceptibility measurements on 1 and 2 assign ground spin states of S= 5, with zero-field splitting parameters (D) of ca. 0.25 cm(-1) obtained from magnetisation isotherms. AC susceptibilities showed no maxima as a function of frequency, at low temperatures, and this confirmed the lack of single-molecule magnetic behaviour. Clusters 1 and 2 are isostructural, consisting of two fused {Fe(3)O} trinuclear units, bridged in two positions by one mu(2)-OH(-) unit and two mu(2)-O(2)CR(-) bridging carboxylates (R = Ph (), C(Me)(3)()). The two singly deprotonated dipaH(2)(-) bridging ligands span the Fe1-Fe2 edges in and via one micro(2)-bridging alcohol arm and one terminal nitrogen atom while the second alcohol arm remains free. The ground spin state of S= 5 in 1 and 2 can be attributed to the presence of spin frustration within the system. 1 and 2 join a small family of spin frustrated S= 5 Fe(6) systems the magnetism of which give weight to a recent report that it is the trans position of the two shortest Fe(2) pair frustrated exchange pathways in these Fe(6) clusters that gives rise to a ground spin state of S= 5 (trans) and not a ground spin state of S= 0 (cis). The M?ssbauer spectra of 1 and 2 show two quadrupole doublets, as expected, at 295 K, but a broad asymmetric lineshape at 77 K. The synthesis and magnetic properties of {[Co(II)(3)Co(III)(OH)(O(2)CC(Me)(3))(4)(HO(2)CC(Me)(3))(2)(dipaH)(2)].2MeCN}(n)(3) are reported. 3 is a covalently bonded 1D polymer of tetrameric cobalt clusters. The presence of the dipaH(3) ligand here not only dimerises the [Co(II)(2)(micro-H(2)O)(O(2)CC(Me)(3))(4)(HO(2)CC(Me)(3))(4)] starting complex into the tetranuclear species but also polymerises the [Co(II)(3)Co(III)] clusters in 3 by acting as the propagating ligand in the 1D chain. Magnetic susceptibility measurements on show each [Co(4)] moiety exhibits weak antiferromagnetic coupling between the three Co(II)S= 3/2 metal centres and fitted J values are given. The ambiguity in assignment of the spin ground state of S= 1/2 or 3/2 is discussed.  相似文献   

20.
Ln6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)(8) (Ln = Nd, Eu, Tb, Dy) compounds are obtained as the final hydrolysis products of lanthanide triiodides in an aqueous solution. Their X-ray crystal structure features a body-centered arrangement of oxygen-centered {Ln6X8}8+ cluster cores: [Nd6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1310.4(3) pm, b = 1502.1(3) pm, c = 1514.9(3) pm, 3384 reflections with I0 > 2sigma(I0), R1 = 0.0340, wR2 = 0.0764, GOF = 1.022, T = 298(2) K], [Eu6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1306.6(2) pm, b = 1498.15(19) pm, c = 1499.41(18) pm, 4262 reflections with I0 > 2sigma(I0), R1 = 0.0540, wR2 = 0.0860, GOF = 0.910, T = 298(2) K], [Tb6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1296.34(5) pm, b = 1486.13(7) pm, c = 1491.88(6) pm, 4182 reflections with I0 > 2sigma(I0), R1 = 0.0395, wR2 = 0.0924, GOF = 1.000, T = 298(2) K], and [Dy6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1296.34(5) pm, b = 1486.13(7) pm, c = 1491.88(6) pm, 3329 reflections with I0 > 2sigma(I0), R1 = 0.0389, wR2 = 0.0801, GOF = 0.992, T = 298(2) K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号