首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New di- (2) and tetracarboxylate ligands (4) were prepared on a sulfonylcalix[4]arene platform by O-alkylation of thiacalix[4]arene with ethyl bromoacetate, followed by hydrolysis of the ester function and oxidation of the sulfide bridges. The sulfonyl-based ligands 2 and 4 formed luminescent 1:1 complexes with terbium(III) ion having higher luminescent quantum yield (Φ = 0.291 and 0.287, respectively) than 1:1 complexes of the corresponding thiacalix[4]arene-based di- (1) and tetracarboxylate ligands (3) (Φ = 0.038 and 0.003, respectively), implying higher efficiency of sulfonyl ligands (2 and 4) than those of thia ligands (1 and 3) in the energy transfer process.  相似文献   

2.
Synthesis of aromatic poly(ether ketone) (3) with a narrow molecular weight distribution (Mw/Mn) was investigated via polycondensation. Mns of 3 could be controlled varying the feed ratio of monomer (1) and initiator (2) maintaining relatively narrow Mw/Mns (<1.3). The kinetics of polycondensation obeyed a first-order relationship between polycondensation time and -(1/[2]0) ln([1]/[1]0), and the rate of polycondensation was estimated as 2.57 mol−1 L h−1. MALDI-TOF mass analysis of 3 indicated that polycondensation should proceed via chain growth manner to give 3 having an initiator unit in each chain end.  相似文献   

3.
A bisphosphine in which a PhP-PPh bond bridges 1,8-positions of naphthalene, 1,2-dihydro-1,2-diphenyl-naphtho[1,8-cd]-1,2-diphosphole (1), was used as a bridging ligand for the preparation of dinuclear group 6 metal complexes. Free trans-1, a more stable isomer having two phenyl groups on phosphorus centers mutually trans with respect to a naphthalene plane, was allowed to react with two equivalents of M(CO)5(thf) (M = W, Mo, Cr) at room temperature to give dinuclear complexes (OC)5M(μ-trans-1)M(CO)5 (M = W (2a), Mo (2b), Cr (2c)). The preparation of the corresponding dinuclear complexes bridged by the cis isomer of 1 was also carried out starting from the free trans-1 in the following way. Mono-nuclear complexes M(trans-1)(CO)5 (M = W (3a), Mo (3b), Cr (3c)) which had been prepared by a reaction of trans-1 with one equivalent of the corresponding M(CO)5(thf) (M = W, Mo, Cr) complex, were heated in toluene, wherein a part of the trans-3a-c was converted to their respective cis isomer M(cis-1)(CO)5. Each cis trans mixture of the mono-nuclear complexes 3a-c was treated with the corresponding M(CO)5(thf) to give a cis trans mixture of the respective dinuclear complexes 2a-c. The cis isomer of the ditungsten complex 2a was isolated, and its molecular structure was confirmed by X-ray analysis, showing a shorter W?W distance of 5.1661(3) Å than that of 5.8317(2) Å in trans-2a.  相似文献   

4.
Addition of silyl and germylmethyl azides (1) to fullerene C60 at 50 °C through [2+3] cycloaddition led to the formation of the triazoline adducts (2). Subsequently, heating 2 at 100 °C in the solid state, caused N2 extrusion producing two different isomers, [5,6]-azafulleroid (3) and [6,6]-aziridinofullerene (4). The 13C NMR spectrum of 3 had an absence of resonances in the aliphatic region for the fullerene C60 cage, showing a fulleroid with CS symmetry. In contrast, 4 exhibited one sp3 resonance in the aliphatic region for the fullerene C60 cage, indicative of an aziridinofullerene with C2V symmetry. However, MALDI-TOF mass characterization was hampered because ion peaks corresponding to the bis-adduct are detected in positive ion mode measurements, whereas the ion peaks [M−N2] for 2a as well as [M] for 3a and 4a are observed in negative ion measurements. In an effort to obtain X-ray data, silyl and germylphenyl groups were introduced to form intermolecular complexes with fullerene C60. The X-ray structures of 3c and 3d revealed a strong enhancement of homoconjugation in the bridged annulene moiety based on POAV analysis. The X-ray structures of 3c,d and 4c were confirmed with the detection of silyl and germylphenyl-C60 interactions, similar to dimethoxyphenyl-C60 interactions.  相似文献   

5.
Six polymeric metal(II)-benzoate complexes of formula [Co2(O2CPh)4(4,4′-bpy)2]n (1-Co), [Ni(O2CPh)4(H2O)2(4,4′-bpy)]n (2-Ni), [Cu2(O2CPh)4(4,4′-bpy)]n (3-Cu), [Zn2(O2CPh)2(OH)2(4,4′-bpy)2]n (4-Zn), [Zn3(O2CPh)4(μ-OH)2(4,4′-bpy)2]n (5-Zn), and [Cd2(O2CPh)4(4,4′-bpy)2]n (6-Cd) have been synthesized and characterized (4,4′-bpy = 4,4′-bipyridine). 1-Co and 6-Cd show ladder-type double chains, 2-Ni does a helical structure, 3-Cu does a one-dimensional chain containing paddle-wheel units, 4-Zn does a zigzag chain, and 5-Zn does two-dimensional sheets. Since different structures provide different coordination geometry of each metal ion, it is clear that selection of appropriate metal ions can control the coordination geometry of each metal ion to form different crystal structures. Reactivity study of the compounds 17 for the transesterification of a variety of esters has shown that 4-Zn and 5-Zn are very efficient and the best among them. The catalyst 6-Cd containing Cd ion, well known as an inert metal ion for the ligand substitution, also catalyzed efficiently the transesterification of a variety of esters, and its reactivity is comparable to 4-Zn and 5-Zn. Moreover, the redox-active metal-containing polymers, 1-Co, 3-Cu, and 7-Mn, have shown efficient catalytic reactivities for the transesterification reactions, while 2-Ni has displayed a very slow conversion. The reactivities of the compounds used in this study are in the order of 5-Zn > 4-Zn > 6-Cd > 7-Mn ∼ 3-Cu > 1-Co > 2-Ni, indicating that the non-redox metal-containing compounds (5-Zn, 4-Zn, and 6-Cd) show better activity than the redox-active metal-containing compounds (7-Mn, 3-Cu, 1-Co, and 2-Ni). These results suggest that it is possible to tune the catalytic activities by changing from Zn to those metals such as Cd, a kinetically inert metal, or Cu, Mn, and Co, the redox-active metals.  相似文献   

6.
Reactions of ω-diphenylphosphinofunctionalized alkyl phenyl sulfides Ph2P(CH2)nSPh (n = 1, 1a; 2, 2a; 3, 3a), sulfoxides Ph2P(CH2)nS(O)Ph (n = 1, 1b; 2, 2b; 3, 3b) and sulfones Ph2P(CH2)nS(O)2Ph (n = 1, 1c; 2, 2c; 3, 3c) with dinuclear chlorido bridged rhodium(I) complexes [(RhL2)2(μ-Cl)2] (L2 = cycloocta-1.5-diene, cod, 4; bis(diphenylphosphino)ethane, dppe, 5) afforded mononuclear Rh(I) complexes of the type [RhCl{Ph2P(CH2)nS(O)xPh-κP}(cod)]1 (n/x = 1/0, 6a; 1/1, 6b; 1/2, 6c; 2/0, 8a; 2/1, 8b; 2/2, 8c; 3/0, 10a; 3/1, 10b; 3/2, 10c) and [RhCl{Ph2P(CH2)nS(O)xPh-κP}(dppe)] (n/x = 1/0, 7a; 1/1, 7b; 1/2, 7c; 2/0, 9a; 2/1, 9b; 2/2, 9c; 3/0, 11a; 3/1, 11b; 3/2, 11c) having the P^S(O)x ligands κP coordinated. Addition of Ag[BF4] to complexes 6-11 in CH2Cl2 led with precipitation of AgCl to cationic rhodium complexes of the type [Rh{Ph2P(CH2)nS(O)xPh-κPS/O}L2][BF4] having bound the P^S(O)x ligands bidentately in a κPS (13a-18a, 15b-18b) or a κPO (13b, 14b, 13c-18c) coordination mode. Unexpectedly, the addition of Ag[BF4] to 6a in THF afforded the trinuclear cationic rhodium(I) complex [Rh3(μ-Cl)(μ-Ph2PCH2SPh-κPS)4][BF4]2·4THF (12·4THF) with a four-membered Rh3Cl ring as basic framework. Addition of sodium bis(trimethylsilyl)amide to complexes 6-11 led to a selective deprotonation of the carbon atom neighbored to the S(O)x group (α-C) yielding three different types of organorhodium complexes: a) Organorhodium intramolecular coordination compounds of the type [Rh{CH{S(O)xPh}CH2CH2PPh2CP}L2] (22a-c, 23a-c), b) zwitterionic complexes [Rh{Ph2PCHS(O)xPh-κPS/O}L2] having κPS (21a, 21b) and κPO (20b/c, 21c) coordinated anionic [Ph2PCHS(O)xPh] ligands, and c) the dinuclear rhodium(I) complex [{Rh{μ-CH(SPh)PPh2CP}(cod)}2] (19). All complexes were fully characterized spectroscopically and complexes 15b, 15c, 12·4THF and 19·THF additionally by X-ray diffraction analysis. DFT calculations of zwitterionic complexes gave insight into the coordination mode of the [Ph2PCHS(O)Ph] ligand (κPS versus κPO).  相似文献   

7.
Hisashi Shimada 《Tetrahedron》2009,65(31):6008-2622
Synthesis of 4′-substituted thymidines was investigated based on nucleophilic substitution using organosilicon and organoaluminum reagents. Two substrates having a benzenesulfonyl leaving group at the 4′-position were prepared for this purpose: 1-[4-benzenesulfonyl-3,5-bis-O-(tert-butyldimethylsilyl)-2-deoxy-α-l-threo-pentofuranosyl]thymine () and the 4′-(benzenesulfonyl)thymidine derivative (). The reaction of with organosilicon reagents (Me3SiCH2CHCH2 and Me3SiN3) in combination with SnCl4 gave preferentially the 4′-substituted β-d-isomer: the 4′-allyl (12β) and 4′-azido (15β) derivatives, respectively. The reaction of with AlMe3, however, gave the 4′-methyl-α-l-isomer (16α) as the major product, presumably through an ion pair mechanism. By employing the substrate in this reaction, the 4′-methylthymidine derivative (16β) was obtained exclusively in high yield. The 4′-ethyl (20β) and 4′-cyano (24β) derivatives were also synthesized by reacting with the respective organoaluminum reagent.  相似文献   

8.
Two types of lanthanide selenidoantimonates [Ln(en)4(SbSe4)] (Ln=Ce(1a), Pr(1b)) and [Ln(en)4]SbSe4·0.5en (Ln=Eu(2a), Gd(2b), Er(2c), Tm(2d), Yb(2e); en=ethylenediamine) were solvothermally synthesized by reactions of LnCl3, Sb and Se with the stoichiometric ratio in en solvent at 140 °C. The four-en coordinated lanthanide complex cation [Ln(en)4]3+ formed in situ balances the charge of SbSe43− anion. In compounds 1a and 1b, the SbSe43− anion act as a monodentate ligand to coordinate complex [Ln(en)4]3+ and the neutral compound [Ln(en)4(SbSe4)] is formed. The Ln3+ ion has a nine-coordinated environment involving eight N atoms and one Se atom forming a distorted monocapped square antiprism. In 2a-2e the lanthanide(III) ion exists as isolated complex [Ln(en)4]3+, in which the Ln3+ ion is in a bicapped trigonal prism geometry. A systematic investigation of the crystal structures reveals that two types of structural features of these lanthanide selenidoantimonates are related with lanthanides contraction across the lanthanide series. TG curves show that compounds 1a-1b and 2a-2e remove their organic components in one and two steps, respectively.  相似文献   

9.
Fluorotitanates (LH)2[TiF6nH2O (1: R = pyridine, n = 1, 2: R = 2-picoline, n = 2, 3: R = 2,6-lutidine, n = 0, 4: R = 2,4,6-collidine, n = 0) and (LH)[TiF5(H2O)] (3a: L = 2,6-lutidine) have been synthesized by the reaction of pyridine or corresponding methyl substituted pyridines and titanium dioxide dissolved in hydrofluoric acid. The crystal structures of ionic compounds 1, 2, 3, 3a and 4 have been determined by single-crystal X-ray diffraction analysis. The hydrogen bonding led to the formation of discrete (LH)2[TiF6] units (4), chains (1-3), and layers (3a). The additional π-π interactions present in 1, 2, and 4 results in chain structures of 1 and 4 and in a layer structure of 2. The [TiF6]2− and [TiF5(H2O)] anions were observed by 19F NMR spectroscopy in aqueous solutions of 1, 2, 3, 3a and 4.  相似文献   

10.
The reaction of bromoalkanes (R–Br; (3), R=CnH2n+1, n=4 (a), 8 (b), 12 (c),18 (d)) and bromobenzyl derivatives (R′–Br; (4), R′=CH2C6H2(CH3)3-2,4,6 (a); CH2C6H(CH3)4-2,3,5,6 (b); CH2C6(CH3)5 (c)) with 1H-imidazo[4,5-f][1,10]-phenanthroline (IP)(L2) gave the corresponding 1-R-imidazo[4,5-f][1,10]-phenanthroline (IPR)(L3ad) and 1-R′-imidazo[4,5-f][1,10]-phenanthroline(IPR')(L4ac) ligands, respectively. Treatment of L3ad and L4ad with [Ru(p-cymene)Cl2]2 led to the formation of [Ru(p-cymene)(IPR)Cl]Cl (RuL3ad) and [Ru(p-cymene)(IPR′)Cl]Cl (RuL4ac). New ruthenium(II) complexes RuL3ad and RuL4ac were characterized by elemental analysis, FTIR, UV–visible and NMR spectroscopy. In order to understand effects of these changes on the N-substituent of imidazol on IP and how they translate to catalytic activity, these new RuL2, RuL3ad and RuL4ac were applied in the transfer hydrogenation of ketones by 2-propanol in presence of potassium hydroxide. The activities of the catalysts were monitored by NMR and GC analysis.  相似文献   

11.
The synthesis, crystal structure, thermal analysis and spectroscopic studies of five zinc(II) complexes of formulae [Zn(Memal)(H2O)]n (1) and [Zn2(L)(Memal)2(H2O)2]n (2-5) [H2Memal = methylmalonic acid, and L = 4,4′-bipyridine (4,4′-bpy) (2), 1,2-bis(4-pyridyl)ethylene (bpe) (3), 1,2-bis(4-pyridyl)ethane (bpa) (4) and 4,4′-azobispyridine (azpy) (5)] are presented here. The crystal structure of 1 is a three-dimensional arrangement of zinc(II) cations interconnected by methylmalonate groups adopting the μ32OO’:κO”:κO”’ coordination mode to afford a rare (10,3)-d utp-network. The structures of the compounds 2-5 are also three-dimensional and they consist of corrugated square layers of methylmalonate-bridged zinc(II) ions which are pillared by bis-monodentate 4,4′-bpy (2), bpe (3), bpa (4) and azpy (5) ligands. The Memal ligand in 2-5 adopts the μ3OO′:κO′′:κO′′′ coordination mode. Each zinc(II) ion in 1-5 is six-coordinated with five (1)/four (2-5) methylmalonate-oxygen atoms, a water molecule (1-5) and a nitrogen atom from a L ligand (2-5) building distorted octahedral environments. The rod-like L co-ligands in 2-5 appear as useful tools to control the interlayer metal-metal separation, which covers the range 8.4311(5) Å (2) – 9.644(3) Å (5). The influence of the co-ligand on the fluorescence properties of this series of compounds has been analyzed and discussed by steady-state and time resolved spectroscopy on all five compounds in the solid state.  相似文献   

12.
Syntheses of complexes of the type [ML(NO3)2], where M = Co(II), Ni(II), and Cu(II), L = N-(2-pyridylethyl)pyridine-2-carbaldimine, a tridentate ligand, are described. They were characterized by elemental analysis, spectral, magnetic, thermal studies, and X-ray crystallography. In the cobalt (1), nickel (2), and copper (3) complexes, the bivalent metal ion is coordinated by the three nitrogen atoms of the tridentate L with two pyridine-N groups occupying trans positions. Amongst the two nitrates one coordinates in a bidentate fashion while the other adopts a monodentate fashion. The X-band EPR spectra of 1, 2, and 3 in the polycrystalline state and in acetonitrile solution at 77 K are reported. Room temperature vibrating sample magnetometer data of 1, 2, and 3 afforded μeff values respectively of 3.928, 3.897, and 1.952 BM. The thermal stability order is 1 > 2 > 3, showing a reverse Irving-Williams trend.  相似文献   

13.
The reactions of Mo2(O2CCH3)4 with different equivalents of N,N′-bis(pyrimidine-2-yl)formamidine (HL1) and N-(2-pyrimidinyl)formamide (HL2) afforded dimolybdenum complexes of the types Mo2(O2CCH3)(L1)2(L2) (1) trans-Mo2(L1)2(L2)2 (2) cis-Mo2(L1)2(L2)2 (3) and Mo2(L2)4 (4). Their UV–Vis and NMR spectra have been recorded and their structures determined by X-ray crystallography. Complexes 2 and 3 establish the first pair of trans and cis forms of dimolybdenum complexes containing formamidinate ligands. The L1 ligands in 13 are bridged to the metal centers through two central amine nitrogen atoms, while the L2 ligands in 14 are bridged to the metal centers via one pyrimidyl nitrogen atom and the amine nitrogen atom. The Mo–Mo distances of complexes 1 [2.0951(17) Å], 2 [2.103(1) Å] and 3 [2.1017(3) Å], which contain both Mo?N and Mo?O axial interactions, are slightly longer than those of complex 4 [2.0826(12)–2.0866(10) Å] which has only Mo?O interactions.  相似文献   

14.
The syntheses and structures of a series of metal complexes, namely Cu2Cl4(L1)(DMSO)2·2DMSO (L1 = N,N′-bis(2-pyridinyl)-1,4-benzenedicarboxamide), 1; {[Cu(L2)1.5(DMF)2][ClO4]2·3DMF} (L2 = N,N′-bis(3-pyridinyl)-1,4-benzenedicarboxamide), 2; {[Cd(NO3)2(L3)]·2DMF} (L3 = N,N′-bis-(2-pyrimidinyl)-1,4-benzenedicarboxamide), 3; {[HgBr2(L3)]·H2O}, 4, and {[Na(L3)2][Hg2X5]·2DMF} (X = Br, 5; I, 6) are reported. All the complexes have been characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 is dinuclear and the molecules are interlinked through S?S interactions. In 2, the Cu(II) ions are linked through the L2 ligands to form 1-D ladder-like chains with 60-membered metallocycles, whereas complexes 3 and 4 form 1-D zigzag chains. In complexes 5 and 6, the Na(I) ions are linked by the L3 ligands to form 2-D layer structures in which the [Hg2X5] anions are in the cavities. The L2 ligand acts only as a bridging ligand, while L1 and L3 show both chelating and bridging bonding modes. The L1 ligand in 1 adopts a trans-anti conformation and the L2 ligand in 2 adopts both the cis-syn and trans-anti conformations, whereas the L3 ligands in 36 adopt the trans conformation.  相似文献   

15.
Competitive chlorination of p-substituted triarylbismuthanes 1 [(p-XC6H4)3Bi; a: X = OMe, c: Cl, d: CO2Et, e: CF3, f: CN, g: NO2] and trimesitylbismuthane (2,4,6-Me3C6H2)3Bi 1h by sulfuryl chloride was carried out against 1b (X = H) and the effect of these substituents on the formation of triarylbismuth dichlorides 2 was studied. The relative ratios 2/2b decreased with increasing electron-withdrawing ability of the substituents (2a/2b = 53/47, 2c/2b = 33/67, 2d/2b = 35/65, 2e/2b = 29/71, 2f/2b = 16/84, 2g/2b = 0/100, 2h/2b = 46/54), indicating a lowering of reactivity of the lone pair on the bismuth atom. Pd-Catalyzed degradation of 2a-g and their difluorides 3 giving biaryls 4 was promoted by the electron-withdrawing p-substituents in the equatorial aryl groups but suppressed by the more electronegative fluorine atoms in the apical positions. This is in fairly good accord with the stability of the trigonal bipyramidal geometry. The 13C NMR study of 1-3 showed that the signals due to the ipso carbons (C1) attached to the bismuth atom shift downfield with increasing electron-withdrawing nature of the p-substituents. No such tendency was observed in other aromatic ring carbons. The electronic effect on the C1 atoms, similar to that on the chlorination of 1 and degradation of 2 and 3, indicates the significant participation of the C1 atoms in these reactions through the Bi-C1 bonds.  相似文献   

16.
The synthesis and the characterization of some new aluminum complexes with bidentate 2-pyrazol-1-yl-ethenolate ligands are described. 2-(3,5-Disubstituted pyrazol-1-yl)-1-phenylethanones, 1-PhC(O)CH2-3,5-R2C3HN2 (1a, R = Me; 1b, R = But), were prepared by solventless reaction of 3,5-dimethyl pyrazole or 3,5-di-tert-butyl pyrazole with PhC(O)CH2Br. Reaction of 1a or 1b with (R1 = Me, Et) yielded N,O-chelate alkylaluminum complexes (2a, R = R1 = Me; 2b, R = But, R1 = Me; 2c, R = Me, R1 = Et). Compound 1a was readily lithiated with LiBun in thf or toluene to give lithiated species 3. Treatment of 3 with 0.5 equiv of MeAlCl2 or AlCl3 yielded five-coordinated aluminum complexes [XAl(OC(Ph)CH{(3,5-Me2C3HN2)-1})2] (4, X = Me; 5, X = Cl). Reaction of 5 with an equiv of LiHBEt3 generated [Al(OC(Ph)CH{(3,5-Me2C3HN2)-1})3] (6). Complex 6 was also obtained by reaction of 3 with 1/3 equiv of AlCl3. Treatment of 5 with 2 equiv of AlMe3 yielded complex 2a, whereas with an equiv of AlMe3 afforded a mixture of 2a and [Me(Cl)AlOC(Ph)CH{(3,5-Me2C3HN2)-1}] (7). Compounds 1a, 1b, 2a-2c and 4-6 were characterized by elemental analyses, NMR and IR (for 1a and 1b) spectroscopy. The structures of complexes 2a and 5 were determined by single crystal X-ray diffraction techniques. Both 2a and 5 are monomeric in the solid state. The coordination geometries of the aluminum atoms are a distorted tetrahedron for 2a or a distorted trigonal bipyramid for 5.  相似文献   

17.
A facile method has been developed for the synthesis of 4H-chromene-3-carboxylates 3ad by the nucleophilic substitution reaction of 2-hydroxy-2H-chromene-3-carboxylates 2ad with triethylsilane in the presence of BF3·O(C2H5)2. Cyclocondensation of 4H-chromene-3-carboxylates 3ad with benzylamines 4ad afforded a series of 2,3-dihydrochromenopyrrolones 5ap and with propargylamine afforded 2-propynyl-2,3-dihydrochromenopyrrolones 6ad. Click reaction of 6ad with benzyl azides 7ad provided a series of 1H-1,2,3-triazolylmethyl-2,3-dihydrochromenopyrrolones 8ap. Thus synthesized compounds 3ad, 5ap, 6ad, and 8ap are novel heterocyclic compounds and being reported for the first time.  相似文献   

18.
Palladium complexes composed of [Pd(Ln)2Cl2] (n = 1, 2, 3, 4, 6), [L5a]2[PdCl4] and [Pd(L5b)2], where L1 = 4,5-dihydro-2-phenyl-1H-imidazole (=2-phenyl-1H-imidazoline), L2 = 2-(o-fluorophenyl)-1H-imidazoline, L3 = 2-(o-methylphenyl)-1H-imidazoline, L4 = 2-(o-tert-butylphenyl)-1H-imidazoline, L5a = 2-(o-hydroxyphenyl)-1H-imidazolinium, L5b = 2-(1H-imidazolin-2-yl)phenolate, and L6 = 2-(o-methylphenyl)-1H-imidazole, were synthesized. Molecular structures of the isolated palladium complexes were characterized by single crystal X-ray diffraction analysis. The effect of ortho-substituents on the phenyl ring on trans-chlorine geometry was noted for complexes [Pd(L1)2Cl2] 1a and 1b, [Pd(L2)2Cl2] 2 and [Pd(L6)2Cl2] 6, whereas cis-chlorine geometry was observed for [Pd(L3)2Cl2] 3 and [Pd(L4)2Cl2] 4. PdCl2 reacts with 2-(o-hydroxyphenyl)-1H-imidazoline in DMF to give [L5a]+ and [L5b]- so that [L5a]2[PdCl4] 5a and [Pd(L5b)2] 5b were obtained. In complex 5b, as an N,O-bidentate ligand, two ligands L5b coordinated with the central Pd(II) ion in the trans-form. The coordination of PdCl2 with 2-(o-hydroxyphenyl)-1H-imidazolines in solution was investigated by NMR spectroscopy.  相似文献   

19.
β-CF3-α,β-diphenylvinyl sulfide 3a was prepared stereoselectively in 77% yield from the reaction of 2 with phenyllithium at room temperature for 5 h. Oxidation of 3a with MCPBA afforded the corresponding vinyl sulfone 4a, in which (E)-4a can be crystallized in a mixture of CH2Cl2 and hexane. The addition-elimination reaction of (E)-4a with phenyllithium having substituents on the benzene ring provided 5a-j in 51-82% yields stereospecifically. Similarly, the treatment of (E)-4a with p-chloroethoxyphenyllithium in the presence of 12-crown-4 (20 mol %) at −10 °C, followed by slowly warming to room temperature, resulted in the formation of the corresponding panomifene precursor 6 in 82% yield.  相似文献   

20.
The syntheses, structures and ligand conformations of the complexes trans-Cu(L1)2(ClO4)2, (L1 = N-(2-pyrimidinyl)-P,P-diphenyl-phosphinic amide), 1, [trans-Co(L1)2(CH3OH)2](ClO4)2·O(C2H5)2, 2, [trans-Co(L2)2(H2O)2](ClO4)2·2CH3OH, (L2 = N-(2-pyridinyl)-P,P-diphenyl-phosphinic amide), 3, [cis-Co(L2)2(NO3)](NO3), 4, and [Ag(L3)(NO3)(CH3CN)], (L3 = N-(6-methyl-2-pyridinyl)-P,P-diphenyl-phosphinic amide), 5, are reported. The L1 and L2 ligands in the monomeric complexes 1-4 chelate the metal centers through the pyrimidyl/pyridyl nitrogen atoms and the phosphinic amide oxygen atoms, whereas the L3 ligands in complex 5 bridge the metal centers, forming a 1-D zigzag chain. The chelating L2 ligands in complexes 3 and 4 adopt cis conformations and the bridging L3 ligand in complex 5 adopts a trans conformation, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号