首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The La2CuO4 crystal nanofibers were prepared by using single-walled carbon nanotubes as templates under mild hydrothermal conditions. The steam reforming of methanol (SRM) to CO2 and H2 over such nanofiber catalysts was studied. At the low temperature of 150 °C and steam/methanol=1.3, methanol was completely (100%, 13.8 g/h g catalyst) converted to hydrogen and CO2 without the generation of CO. Within the 60 h catalyst lifespan test, methanol conversion was maintained at 98.6% (13.6 g/h g catalyst) and with 100% CO2 selectivity. In the meantime, for distinguishing the advantage of nanoscale catalyst, the La2CuO4 bulk powder was prepared and tested for the SRM reaction for comparison. Compared with the La2CuO4 nanofiber, the bulk powder La2CuO4 showed worse catalytic activity for the SRM reaction. The 100% conversion of methanol was achieved at the temperature of 400 °C, with the products being H2 and CO2 together with CO. The catalytic activity in terms of methanol conversion dropped to 88.7% (12.2 g/h g catalyst) in 60 h. The reduction temperature for nanofiber La2CuO4 was much lower than that for the La2CuO4 bulk powder. The nanofibers were of higher specific surface area (105.0 m2/g), metal copper area and copper dispersion. The in situ FTIR and EPR experiments were employed to study the catalysts and catalytic process. In the nanofiber catalyst, there were oxygen vacancies. H2-reduction resulted in the generation of trapped electrons [e] on the vacancy sites. Over the nanofiber catalyst, the intermediate H2CO/HCO was stable and was reformed to CO2 and H2 by steam rather than being decomposed directly to CO and H2. Over the bulk counterpart, apart from the direct decomposition of H2CO/HCO to CO and H2, the intermediate H2COO might go through two decomposition ways: H2COO=CO+H2O and H2COO=CO2+H2.  相似文献   

2.
The complex [PdCl2(P-N)] containing the basic and sterically demanding 8-(di-tert-butylphosphinooxy)quinoline ligand (P-N) is a highly efficient catalyst for the coupling of phenylboronic acid with aryl bromides or aryl chlorides. The influence of solvent and base has been investigated, the highest rates being observed at 110 °C in toluene with K2CO3 as the base. With aryl bromides the reaction rates are almost independent on the electronic properties of the para aryl substituents, on the contrary, reduced reaction rates are observed when bulky substituents are present on the substrate. Nevertheless the coupling of 2-bromo-1,3,5-trimethylbenzene with phenylboronic acid can be carried out to completion in 2 h using a catalyst loading of 0.02 mol %. Under optimized reaction conditions, turnover frequencies as high as 1900 h−1 can be obtained in the coupling of 4-chloroacetophenone with phenylboronic acid; lower reaction rates are obtained with substrates bearing EDG substituents on the aryl group.  相似文献   

3.
Poly(dimethylsiloxane) (PDMS)-HTiNbO5 nanocomposite membranes with various HTiNbO5 nanofiller content were prepared by melt intercalation. WAXS diffraction measurements and TEM observations have suggested that the HTiNbO5 mineral was exfoliated in the PDMS matrix. The influence of the filler in the membrane was evaluated by water diffusion, gas permeation (CO2, N2, O2, ethane and ethylene), toluene pervaporation and by CO2 sorption measurements.A filler content of only 2 wt.% in PDMS-HTiNbO5 nanocomposite membranes slows down the water diffusion significantly, and a filler content of 5 wt.% reduces also the permeability of the films for toluene. The addition of a filler content up to 10 wt.% do not significantly influences the gas permeability (P) except for CO2. The PDMS matrix appears to be highly permeable and, therefore, a decreasing effect on P is only marked for a very high HTiNbO5 content. This effect is more pronounced for CO2, the P value of which decreases by 80% when the amount of nanofiller is 40 wt.%. The sorption measurements show that the interaction between CO2 and PDMS is weak (isotherms agree with Henry’s law). The filler decreases the solubility of CO2 in the films (S = 7.94 × 10−3 and S = 5.44 × 10−3 cm3 STPcm−3 film cmHg−1 for PDMS and PDMS-HTiNbO5 40 wt.%, respectively).  相似文献   

4.
The catalytic activity of η2-(olefin)palladium(0)(iminophosphine) complexes in the Suzuki-Miyaura coupling is strongly dependent on the reaction conditions and on the nature of the ligands. The reaction is at the best carried out in aromatic solvents in the presence of K2CO3 at 90-110 °C. Higher reaction rates are obtained when the R substituent on the N-imino group is an aromatic group of low steric hindrance and the olefin is a moderate π-accepting ligand such as dimethyl fumarate. At temperatures lower than 90 °C, a self-catalyzed process leading to catalyst deactivation becomes predominant. Preliminary mechanistic investigations indicate that the oxidative addition of the aryl bromide to a Pd(0) species is the rate determining step in the catalytic cycle and that the olefin plays a key role in catalyst stabilization. Systems in situ prepared by mixing Pd(OAc)2 or Pd(dba)2 with 1 equiv of iminophosphine appear substantially less active than the preformed catalysts.  相似文献   

5.
Azido coordinated dithiolene complexes [CpCo(N3){S2C2(CO2Me)2}(S-CHR1R2)], where R1, R2 = H (4a); R1 = H, R2 = SiMe3 (4b); R1 = H, R2 = CO2Et (4c), were synthesized by the reactions of the corresponding Cl coordinated precursors [CpCo(Cl){S2C2(CO2Me)2}(S-CHR1R2)] (3a-3c) with sodium azide. The Cl coordinated complex 3d (R1, R2 = CO2Me) did not produce any N3 coordinated complexes but formed the CR1R2-bridged alkylidene adduct [CpCo{S2C2(CO2Me)2}(CR1R2)] (2d; R1, R2 = CO2Me). The structure of 4a was determined by X-ray diffraction study. In the molecular structure of 4a, the coordinated N3 ligand and CHR1R2 group were located at the same side with respect to the dithiolene ring (syn form), although the corresponding Cl precursor (3a; R1, R2 = H) was anti form. A structural conversion of syn/anti was conceivable during the Cl/N3 ligand exchange. Thermal (80 °C) and photochemical reactions (Hg lamp) of 4a-4c were performed. Among them, 4c was relatively well reacted compared with the others to form the CR1R2-bridged alkylidene adduct (2c; R1 = H, R2 = CO2Et), followed by a formal HN3 elimination, and the reaction also produced non-adduct of the cobalt dithiolene complex [CpCo{S2C2(CO2Me)2}] (1). The electrochemical 1e reduction of 4c underwent a formal N3 ligand elimination, and successive second reduction caused the CHR1R2 group elimination or reformed the CR1R2-bridged alkylidene adduct 2c.  相似文献   

6.
The new quaternary lanthanum copper oxysulfide La3CuO2S3 has been synthesized by the reaction of La2S3 and CuO at 1223 K. This compound crystallizes in space group Pnma of the orthorhombic system with four formula units in a cell of dimensions at 153 K of a=14.0318(7) Å, b=3.9342(2) Å, and c=12.5212(6) Å. The structure of La3CuO2S3 consists of a three-dimensional framework of interconnected LaOnS8−n bicapped trigonal prisms and CuS4 tetrahedra. Optical absorption measurements on a La3CuO2S3 single crystal led to derived band gaps of 2.01 eV in both the [010] and [001] directions.  相似文献   

7.
The first successful example of a catalytic asymmetric cyclopropanation with α-diazopropionates is described. The cyclopropanation reaction of 1-aryl-substituted and related conjugated alkenes with tert-butyl α-diazopropionate has been achieved by catalysis with dirhodium(II) tetrakis[N-tetrabromophthaloyl-(S)-tert-leucinate], Rh2(S-TBPTTL)4, providing the corresponding cyclopropane products containing a quarternary stereogenic center in good to high yields and with high diastereo- and enantioselectivities (trans:cis = 90:10 to >99:1, 81-93% ee).  相似文献   

8.
The organoplatinum complex containing ortho-metalated (S)-(1-(dimethylamino)ethyl)-naphthalene as the chiral auxiliary has been used to promote the asymmetric [4+2] Diels-Alder reaction between phenyldivinylphosphine and 2-diphenylphosphinofuran. The reaction was complete in 6 days at room temperature, with the formation of four isomeric diphosphino-substituted oxanorbornene metal complexes in the ratio of 4:2:2:1. Only the exo-cycloaddition products were formed. The formation of stereogenic carbon centers within the oxanorbornene skeleton are highly stereoselective, with all four cycloadducts adopting the same absolute configurations. However, the stereocontrol at the external phosphorus stereogenic center is less efficient (Sp:Rp = 2:1 for the template cycloadducts). The chiral naphthylamine auxiliary could be removed chemoselectively by treatment with concentrated hydrochloric acid, and further ligand liberation of the dichloro complexes with aqueous cyanide gave the diphosphino-substituted oxanorbornene ligands. Hydrogenation of the double bonds in the cycloadduct stabilizes the phosphorus stereogenic center of the free diphosphine ligand which otherwise undergoes inversion of absolute configuration.  相似文献   

9.
The reaction between lanthanum oxide and strontium carbonate was studied non-isothermally between 350 and 1150 °C at different heating rates, intermediates and the final solid product were characterized by X-ray diffractometry (XRD). The reaction proceeds through formation of lanthanum oxycarbonate La2O(CO3)2, lanthanum dioxycarbonate La2O2CO3, and non-stoichiometric strontium lanthanum oxide La2SrOx (x = 4 + δ). La4SrO7 was found to be the final product which begins to form at ∼700 °C. Li+ doping enhances the formation of the final product as well as commencement of the reactions at lower temperatures.  相似文献   

10.
The ruthenium complex prepared from [RuCl2(p-cymene)]2 and (1S,2R)-1-amino-2-indanol is a very efficient catalyst for the asymmetric transfer hydrogenation of (R)-N-(tert-butanesulfinyl)ketimines in isopropanol. By carefully removing all possible moisture from the reaction medium, chiral primary amines with very high optical purities (up to >99% ee) can be easily prepared in excellent yields by the diastereoselective reduction of the imines followed by removal of the sulfinyl group under mild acidic conditions. Reaction times of 1-4 h were needed to complete the reduction reactions when they were performed at 40 °C.  相似文献   

11.
Unlike the lithiation of N-Boc-2-alkylpiperidines, which occurs at the 6-position, N-Boc-2-phenylpiperidine and N-Boc-2-phenylpyrrolidine can be lithiated exclusively at the 2-position. The tertiary carbanions can be trapped with a variety of electrophiles. This chemistry was used for the synthesis of a potent NK1 ligand (Ki = 0.3 nM). The bioactive configuration at the piperidine quaternary center was determined by X-ray analysis to be (S).  相似文献   

12.
Shaohua Gou  Xin Zhou 《Tetrahedron》2007,63(33):7935-7941
A new self-assembled catalyst based on titanium complex has been developed for the effective enantioselective cyano-ethoxycarbonylation of aldehydes. The self-assembled catalyst was readily prepared from (R)-3,3′-bis((methyl((S)-1-phenylethyl)amino)methyl)-1,1′-binaphthyl-2,2′-diol (1h), N-((1S,2R)-2-hydroxy-1,2-diphenylethyl)acetamide (2b), and tetraisopropyl titanate (Ti(OiPr)4). A variety of aromatic aldehydes, aliphatic aldehydes, and α,β-unsaturated aldehydes were found to be suitable substrates in the presence of the self-assembled titanium catalyst (5 mol % 1h, 5 mol % 2b, and 5 mol % Ti(OiPr)4). The desired cyanohydrin ethyl carbonates were afforded with high isolated yields (up to 95%) and moderate to good enantioselectivities (up to 92% ee) under mild conditions (at −15 °C). A possible catalytic cycle based on the experimental observation was proposed.  相似文献   

13.
The use of pyridine-2,6-dimethanol (pdmH2) in copper(II) nitrate chemistry is reported. The reaction of Cu(NO3)2·3H2O with one equivalent of pdmH2 in MeCN affords the known mononuclear complex [Cu(pdmH2)2](NO3)2 (1) in high-yield. The reaction of 1 and NaOMe in an 1:1 ratio, as well as the reaction between Cu(NO3)2·3H2O, pdmH2 and NaOMe in an 1:1:1 ratio, in MeOH gives the tetranuclear complex [Cu4(NO3)2(pdmH)4(H2O)(MeOH)](NO3)2 (2) in moderate yields. The cation of 2 possesses a slightly distorted tetrahedral Cu4 topology with a [Cu42-OR)4]4+ core. The pdmH ions behave as η1122 ligands. Strong intramolecular hydrogen bonds and π–π stacking interactions provide thermodynamic stability on compound 2. Variable-temperature, solid-state dc magnetic studies were carried out on complex 2 in the 2.0–300 K range. The data indicate predominant antiferromagnetic exchange interactions and a resulting S = 0 ground state, which is expected for a solely, μ2-alkoxide-bridged system with obtuse Cu–O–Cu bond angles that magnetically behaves as a Cu4 ring. A simplified 1 − J model was found to be adequate to describe the variable-temperature dc susceptibility data. The data were fitted to the appropriate equation derived from the Hamiltonian H = −J1(S1 · S2 + S2 · S4 + S3 · S4 + S1 · S3), giving the parameters J1 = −99.5 cm−1 and g = 2.11(4). The combined work demonstrates the ligating flexibility of the pdmH2 chelate and its usefulness in the synthesis of oligo- and polynuclear CuIIx clusters with interesting structural and magnetic properties, without requiring the co-presence of carboxylate ligands.  相似文献   

14.
The reactions of a series of 5-alkyl-2-thiophenedithiocarboxylates with nickel(II) chloride afforded two types of complexes, blue nickel(II) complexes with two terminal dithiocarboxylate ligands, [Ni(S2CTR)2] and violet nickel(II) complexes with perthio- and dithiocarboxylate ligands, [Ni(S2CTR)(S3CTR)] (where T = 2,5-disubstituted thiophene, R = CnH2n+1, n = 4, 6, 8, 12, 16). The blue monomers are preferred for the shorter chains (C4 and C6) and the violet compounds form exclusively for the longer chains (C8, C12, and C16) in the alkylthiophene complexes. In addition to the above series, [Ni(S2CTCH3)2], was prepared in a one-pot reaction in THF and both the blue and violet products were isolated. It was possible to convert the blue complexes [Ni(S2CTR)2] (R = butyl, hexyl) into the corresponding violet complexes [Ni(S2CTR)(S3CTR)] after stirring in THF solutions for prolonged periods of time. Liquid-crystalline properties of these complexes were examined by DSC and POM. The violet complexes with C8 and C12 alkyl chains showed liquid-crystalline properties.  相似文献   

15.
It is discovered that the use of biscyclohexylamine (Cy2NH) as an additive can greatly enhance the enantioselectivity for the reaction of linear alkyl alkynes with linear aldehydes. The combination of (S)-BINOL (20 mol %), Cy2NH (5 mol %), ZnEt2 (2 equiv), and Ti(OiPr)4 (0.5 equiv) catalyzes the reaction at room temperature in diethyl ether solution with 81-89% ee and 57-77% yield.  相似文献   

16.
Biphen(OPi-Pr) and (COD)PtCl2 give Biphen(OPi-Pr)PtCl2 which upon treating with ethyl Grignard forms Biphen(OPi-Pr)PtEt2. The thermal decomposition of Biphen(OPi-Pr)PtEt2 was investigated in the temperature range of 353-383 K. The clean and quantitative formation of the Pt(Ethene) adduct was observed. X-ray structures of a molecule in the solid state of all three reaction products and two further related complexes with phenyl fingers instead of i-Pr have been determined. For the complexes with i-Pr fingers a decisive deviation from a square plane is observed in contrast to the complexes with phenyl fingers. The P-Pt-P angle increases from about 95° in Biphen(OPi-Pr)PtCl2 to about 120° in Biphen(OPi-Pr)Pt(Ethene), forcing the bridging C-C single bond of the biphenyl fragment as near as 4.17 Å to the Pt center. No through-space coupling between the bridging C atoms and the Pt center could be observed in 13C NMR spectroscopy. No bond lengthening of the bridging C-C single bond in the biphenyl fragment was observed in Biphen(OPi-Pr)Pt(Ethene) in comparison to the precursor complexes. The thermal decomposition of Biphen(OPi-Pr)PtEt2 can be described by a first-order kinetic and the activation parameters were determined (temperature range: 353-383 K; ΔH = 173.8 ± 16.2 kJ/mol and ΔS = 104.7 ± 44.1 J/(mol K)). The reaction kinetics were also measured for perdeuterated ethyl groups yielding in a kinetic isotopic effect of 1.56 ± 0.14 which was almost temperature-independent. Selective deuteration at α and β position of the ethyl group, respectively, showed that β-H elimination takes place fast in comparison to the complete thermolysis. In the temperature range of 333-353 K only a scrambling of the deuterium atoms was found without further decomposition (temperature range: 333-353 K; ΔscramH = 76.1 ± 15.2 kJ/mol, ΔscramS = −80.7 ± 45.5 J/(mol K) for Biphen(OPi-Pr)PtEt2-d6). The ethene is not lost during the scrambling process. The scrambling process is connected with a primary KIE decisively larger than 1.56. Biphen(OPi-Pr)Pt(Ethene) exchanges the coordinated ethene with ethene in solution as proven by labeling experiments. Both a dissociative and an associative mechanism could be shown to take place as ethene exchange reaction by means of VT1H NMR spectroscopy via line shape analysis (temperature range: 333-373 K; ΔassH = 26.9 ± 29.6 kJ/mol, ΔassS = −148.0 ± 87.5 J/(mol K), ΔdissH = 86.0 ± 6.5 kJ/mol, ΔdissS = 5.4 ± 17.8 J/(mol K)). The Pt(0) complex formed during the dissociative loss of ethene activates several substrates among them: O2, H2, H2SiPh2 via Si-H activation, MeI presumably via forming a cationic methyl adduct and ethane via C-H activation but it was proven that the bridging C-C single bond of the biphenyl fragment is not even temporarily broken. The materials were characterized by means of 1H NMR, 13C NMR, 31P NMR, 195Pt NMR, EA, MS, IR, X-ray analysis and polarimetric measurement where necessary.  相似文献   

17.
An autonomous multi-parameter flow-through CO2 system has been developed to simultaneously measure surface seawater pH, carbon dioxide fugacity (fCO2), and total dissolved inorganic carbon (DIC). All three measurements are based on spectrophotometric determinations of solution pH at multiple wavelengths using sulfonephthalein indicators. The pH optical cell is machined from a PEEK polymer rod bearing a bore-hole with an optical pathlength of ∼15 cm. The fCO2 optical cell consists of Teflon AF 2400 (DuPont) capillary tubing sealed within the bore-hole of a PEEK rod. This Teflon AF tubing is filled with a standard indicator solution with a fixed total alkalinity, and forms a liquid core waveguide (LCW). The LCW functions as both a long pathlength (∼15 cm) optical cell and a membrane that equilibrates the internal standard solution with external seawater. fCO2 is then determined by measuring the pH of the internal solution. DIC is measured by determining the pH of standard internal solutions in equilibrium with seawater that has been acidified to convert all forms of DIC to CO2. The system runs repetitive measurement cycles with a sampling frequency of ∼7 samples (21 measurements) per hour. The system was used for underway measurements of sea surface pH, fCO2, and DIC during the CLIVAR/CO2 A16S cruise in the South Atlantic Ocean in 2005. The field precisions were evaluated to be 0.0008 units for pH, 0.9 μatm for fCO2, and 2.4 μmol kg−1 for DIC. These field precisions are close to those obtained in the laboratory. Direct comparison of our measurements and measurements obtained using established standard methods revealed that the system achieved field agreements of 0.0012 ± 0.0042 units for pH, 1.0 ± 2.5 μatm for fCO2, and 2.2 ± 6.0 μmol kg−1 for DIC. This system integrates spectrophotometric measurements of multiple CO2 parameters into a single package suitable for observations of both seawater and freshwater.  相似文献   

18.
In this study, a new type of Minisci reaction for regiospecific acylation of phenanthridine has been developed based on cross dehydrogenative coupling (CDC) strategy. Using substoichiometric amount of TBAB (tetrabutylammonium bromide, 30 mol %) and K2S2O8 as an oxidant, acyl radicals generate from aldehyde substrates under thermal conditions followed by a regiospecific intermolecular acylation with phenanthridine. Furthermore, a preliminary research has indicated that the acylation reaction can be carried out at room temperature when K2S2O8/TBAB is displaced by (NH4)2S2O8 and another 5 mol % of fac-Ir(ppy)3 is used as photocatalyst under irradiation of visible light. This intermolecular acylation reaction provides an easy access to 6-acylated phenanthridine derivatives.  相似文献   

19.
Ag2Nb[P2S6][S2] (1) was obtained from the direct solid state reaction of Ag, Nb, P2S5 and S at 500 °C. KAg2[PS4] (2) was prepared from the reaction of K2S3, Ag, Nd, P2S5 and extra S powder at 700 °C. Compound 1 crystallizes in the orthorhombic space group Pnma with a=12.2188(11), b=26.3725(16), c=6.7517(4) Å, V=2175.7(3) Å3, Z=8. Compound 2 crystallizes in the non-centrosymmetric tetragonal space group with lattice parameters a=6.6471(7), c=8.1693(11) Å, V=360.95(7) Å3, Z=2. The structure of Ag2Nb[P2S6][S2] (1) consists of [Nb2S12], [P2S6] and new found puckered [Ag2S4] chains which are along [001] direction. The Nb atoms are located at the center of distorted bicapped trigonal prisms. Two prisms share square face of two [S22−] to form one [Nb2S12] unit, in which Nb-Nb bond is formed. The [Nb2S12] units share all S2− corners with ethane-like [P2S6] units to form 14-membered rings. The novel puckered [Ag2S4] chains are composed of distorted [AgS4] tetrahedra and [AgS3] triangles that share corners with each other. These chains are connected with [P2S6] units and [Nb2S12] units to form three-dimensional frame work. The structural skeleton of 2 is built up from [AgS4] and [PS4] tetrahedra linked by corner-sharing. The three-dimensional anionic framework contains orthogonal, intersecting tunnels directed along [100] and [010]. This compound possesses a compressed chalcopyrite-like structure. The structure is compressed along [001] and results from eight coordination sphere for K+. Both compounds are characterized with UV/vis diffuse reflectance spectroscopy and compound 1 with IR and Raman spectra.  相似文献   

20.
Reactions between carbon dioxide and fluorine were examined at temperatures of 303-523 K under various pressure and mixture ratios of both gases. Reactions were carried out similarly under the existence of NaF, CsF and EuF3.After the reaction, fluorine was removed and the reaction products were analyzed using FT-IR, GC/FT-IR and GC/MS. The major products were CF3OF, COF2, CF4 and CF2(OF)2.The best yield of COF2 was 11.1% under the reaction condition of CO2/F2 = 76 kPa/76 kPa with temperature of 498 K for 72 h in a direct reaction. The formation rate of COF2 in the direct reaction was estimated as 0.232 dm3 mol−1 h−1 under the reaction conditions of CO2/F2 = 76 kPa/76 kPa, at 498 K. In the presence of CsF, it was estimated as 1.88 dm3 mol−1 h−1 at CO2/F2 = 76 kPa/76 kPa at 498 K.The activation energy of the COF2 formation in the direct reaction was estimated as 45.7 kJ mol−1 at CO2/F2 = 76 kPa/76 kPa at 498 K. In addition, 24.2 and 38.9 kJ mol−1 were evaluated at CO2/F2 = 76 kPa/76 kPa at 498 K, respectively, in the presence of CsF and EuF3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号