首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asymmetric aldol reactions of aliphatic ketones or aldehydes with aromatic aldehydes or isatins were catalyzed by a very simple and flexible N-(2,6-difluorophenyl)-l-valinamide. Interestingly, stereochemical course of the reaction of hydroxyacetones or α-branched aliphatic aldehydes as aldol donors was different from that of cycloalkanones.  相似文献   

2.
3.
A highly enantioselective aldol reaction of acetaldehyde and a wide scope of isatins has been presented only using readily available 4-hydroxydiarylprolinol as catalyst, affording various desired 3-substituted 3-hydroxyindolin-2-one adducts with moderate to high yield (up to 95%) and good enantioselectivities (up to 98% ee). This method not only represents an example of concise stereoselective synthesis of enantiopure (R)-convolutamydines B and E, but also firstly exhibits expedient asymmetric synthesis optically active (−)-donaxaridine and (R)-chimonamidine.  相似文献   

4.
Catalytic activities of (3S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (THIQA)-based mono- and dipeptides and their l-proline analogs in asymmetric aldol reaction were investigated. THIQA-based dipeptides showed better enantioselectivity than proline analogs, whereas proline-based dipeptides gave higher yield in the aldol reaction of cyclohexanone with several aldehydes in dichloromethane at −10 °C in the presence of benzoic acid.  相似文献   

5.
A Brønsted acid catalyzed Diels-Alder reaction of 2-vinylindoles and 3-nitrocoumarins has been described. The methodology allows a rapid and expedient synthesis of a variety of coumarin-fused polycyclic indoles in good yields (up to 82%) with high diastereoselectivities (up to >19:1).  相似文献   

6.
Aldol reaction of trimethylsilyl enolate with aldehyde proceeded in the presence of a catalytic amount of a Lewis base, N-methylimidazole, and lithium chloride in DMF at room temperature. Not only aryl aldehyde but also alkyl aldehyde provided the aldol product in satisfactory yields. The reaction was mild enough to apply to the aldehyde having HO, AcO, THPO, TBDMSO, MeS, pyridyl or olefinic group. Microwave irradiation accelerated the reaction.  相似文献   

7.
Noyori’s Ts-DPEN ligand bearing an amino sulfonamide moiety and with a primary amino group on a chiral scaffold was found to be a simple and efficient bifunctional organocatalyst for the asymmetric Michael addition of 1,3-dicarbonyl compounds to nitroolefins, which gave highly functional Michael adduct with quaternary stereocenters in good enantioselectivities (up to 84%ee) and dr (up to 5.7:1 dr).  相似文献   

8.
丙烯酸及其酯是重要的化工原料,广泛应用于涂料、粘结剂、纤维等领域,目前工业上常采用丙烯两段氧化法进行制备,但该法以石油基原料丙烯为源头,采用V/Mo/Bi等金属催化剂,不符合可持续发展理念,且存在环境污染及氧气下产物易过度氧化等问题.如何高效、安全、大规模工业化制备丙烯酸及其酯是研究者追求的目标.以乙酸甲酯(Mac)和甲醛为原料,通过羟醛缩合一步制备丙烯酸及其酯是一条完全不同于丙烯氧化法的合成路径,原料均可由煤基甲醇得到,符合我国"富煤、贫油、少气"基本能源结构,且该方法碳原子利用率为100%,副产物仅为水,属于绿色环保合成路径.本文以甲缩醛(DMM)为甲醛源,创新性地采用固体硅铝分子筛为酸性催化剂,催化DMM和MAc发生羟醛缩合反应来制备丙烯酸.硅铝分子筛具有较高的活性,可高效地催化羟醛缩合反应,且具有很好的再生性能,即使催化剂寿命较短,也可采用流化床或移动床等反应器进行工业化,因此具有良好的工业化前景.硅铝分子筛中常含有Br?nsted酸和Lewis酸,为试图说明羟醛缩合反应的真正活性位点,我们以羟醛缩合反应性能最佳的HZSM-35分子筛为研究目标.首先,利用红外研究HZSM-35分子筛的酸性质.发现分子筛中桥羟基提供Br?nsted酸,外骨架铝物种提供Lewis酸.通过对桥羟基红外峰一阶求导,发现其对称性较差,表明Br?nsted酸在HZSM-35分子筛孔道中分布不均匀.利用红外分峰手段,得知约51%的Br?nsted酸分布于八元环和六元环交叉所形成的笼(cage)中,约23%分布于十元环孔道,26%分布于八元环孔道中.同时,利用吡啶在分子筛HZSM-35不同温度下的吸附情况验证了这一分峰结果.其次,利用钠离子交换方法制备不同Br?nsted酸浓度的ZSM-35分子筛,经吡啶红外表征得知,Br?nsted酸浓度随钠离子交换程度增加而逐渐降低,而Lewis酸浓度并未改变;在羟醛缩合反应性能中,丙烯酸及丙烯酸甲酯选择性和收率均随Br?nsted酸浓度增加而逐渐升高,考虑到Lewis酸浓度并未变化,可知Br?nsted酸是羟醛缩合反应性能的活性位点,其浓度增加有利于羟醛缩合反应性能的提高.同时,对比不同ZSM-35分子筛失活现象,高Br?nsted酸浓度时分子筛重积炭量最高,这可能是由于Br?nsted催化不饱和产物关环生成芳烃物种或(和)发生氢转移过程所导致.  相似文献   

9.
‘Fluorous nanoflow’ system is extremely effective for the lanthanide bis(perfluorooctanesulfonyl)amide-catalyzed Mukaiyama aldol reaction with dramatic increase in the reaction rate by the continuously controlled nano feeder. Thus, the acceleration of the aldol reaction was achieved even in the lowest concentration (<0.0001 M) of the lanthanide fluorous catalyst and, hence, the reaction completed within seconds as a bi-phase contact time in the micro cell.  相似文献   

10.
A general stereocontrolled approach for entry into a family of highly biologically active 2,5-diaryl-3,4-disubstituted furano lignans has been developed. The key step involves a diastereoselective aldol-type condensation of an ester enolate having an α-chiral center with an aromatic aldehyde. The methodology has been illustrated with the total syntheses of (−)-talaumidin and (−)-virgatusin.  相似文献   

11.
A new, short, and simplified procedure for the synthesis of optically active pyridine derivatives from pro-chiral pyridine-N-oxides is presented. The catalytic and asymmetric Mukaiyama aldol reaction between ketene silyl acetals and 1-oxypyridine-2-carbaldehyde derivatives catalyzed by chiral copper(II)-bis(oxazoline) complexes gave optically active 2-(hydroxyalkyl)- and 2-(anti-1,2-dihydroxyalkyl)pyridine derivatives in good yields and diastereoselectivities, and in excellent enantioselectivities-up to 99 % enantiomeric excess. As a synthetic application of the developed method, a full account for the asymmetric total synthesis of a nonnatural indolizine alkaloid is provided.  相似文献   

12.
A metal–organic framework Al‐MIL‐53‐NH2‐derived Brønsted acid catalyst (Al‐MIL‐53‐RSO3H) has been synthesized employing a post‐synthetic modification strategy under mild conditions. The Al‐MIL‐53‐RSO3H catalyst was successfully utilized in the nitro‐Mannich reaction taking advantage of its strong Brønsted acidity. Good to excellent yields of Mannich adducts were achieved for a variety of acylimine substrates in the presence of 0.1 mol% Al‐MIL‐53‐RSO3H. Furthermore, the Al‐MIL‐53‐RSO3H catalyst can be recycled five times without decreasing the yield and selectivity of Mannich adducts.  相似文献   

13.
Rhodium(I) catalyzed three-component reaction for the one pot synthesis of diarylmethylamines in excellent yields were achieved by using aldehyde, boronic acid, and sulfonamides. The use of hyper-valent bis(trifluoroacetoxy)iodobenzene as an additive plays a key role in the chemo selective formation of amines instead of alcohols.  相似文献   

14.
An attractive method for assembling π-conjugated dienynes with high stereoselectivity was achieved by dehydration reaction of TMS-substituted [3]cumulenols catalyzed by TsOH·H2O. On the other hand, cycloisomerizations of the corresponding [3]cumulenones catalyzed by gold(I) complexes afford vinyl furans through activation of the cumulenic double bond via a π-complex, and during the process, deprotonation from an alkyl group on cumulene terminus takes place to induce the isomerization.  相似文献   

15.
We report an environmentally friendly, efficient and practical method for the synthesis of 2‐aminobenzothiazoles by a copper(II)‐catalyzed tandem reaction of 2‐haloanilines with isothiocyanates under ligand‐ and solvent‐free conditions in air. The developed methodology conforms to the principles of 'green chemistry' and addresses the shortage of such methods for the synthesis of 2‐aminobenzothiazoles. The reaction is quite general and generates a variety of 2‐aminobenzothiazoles in good to excellent yields. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Long B  Long ZW  Wang YB  Tan XF  Han YH  Long CY  Qin SJ  Zhang WJ 《Chemphyschem》2012,13(1):323-329
The formic acid catalyzed gas‐phase reaction between H2O and SO3 and its reverse reaction are respectively investigated by means of quantum chemical calculations at the CCSD(T)//B3LYP/cc‐pv(T+d)z and CCSD(T)//MP2/aug‐cc‐pv(T+d)z levels of theory. Remarkably, the activation energy relative to the reactants for the reaction of H2O with SO3 is lowered through formic acid catalysis from 15.97 kcal mol?1 to ?15.12 and ?14.83 kcal mol?1 for the formed H2O ??? SO3 complex plus HCOOH and the formed H2O ??? HCOOH complex plus SO3, respectively, at the CCSD(T)//MP2/aug‐cc‐pv(T+d)z level. For the reverse reaction, the energy barrier for decomposition of sulfuric acid is reduced to ?3.07 kcal mol?1 from 35.82 kcal mol?1 with the aid of formic acid. The results show that formic acid plays a strong catalytic role in facilitating the formation and decomposition of sulfuric acid. The rate constant of the SO3+H2O reaction with formic acid is 105 times greater than that of the corresponding reaction with water dimer. The calculated rate constant for the HCOOH+H2SO4 reaction is about 10?13 cm3 molecule?1 s?1 in the temperature range 200–280 K. The results of the present investigation show that formic acid plays a crucial role in the cycle between SO3 and H2SO4 in atmospheric chemistry.  相似文献   

17.
The 1:1 imine intermediate generated by the addition of a primary amine to cyclohexanone trapped by N-isocyaniminotriphenylphosphorane (NICITPP) in the presence of aromatic carboxylic acids and the corresponding iminophosphorane intermediate was formed. Disubstituted 1,3,4-oxadiazole derivatives are formed via intramolecular aza-Wittig reaction of the iminophosphorane intermediate. The reactions were completed in neutral conditions at room temperature (18-26°C). The disubstituted 1,3,4-oxadiazole derivatives were produced in excellent yields.  相似文献   

18.
Based on stereoisotopic studies and β‐secondary isotope effects, we propose that the acid‐catalyzed cyclization of geranyl acetate proceeds through a concerted mechanism. Under heterogeneous conditions (zeolite Y confinement), a preorganized chairlike transition state predominates, whereas under homogeneous conditions the boat‐ and chairlike transition states are almost isoenergetic. For the case of farnesyl acetate, we propose that under homogeneous conditions a concerted dicyclization occurs with a preorganized boat–chair transition state competing with the chair–chair transition state. Under zeolite confinement conditions, the chair–chairlike dicyclization transition state is highly favorable. The preference of chairlike transition states within the cavities of zeolite Y is attributed to a transition state shape selectivity effect.  相似文献   

19.
A computational study on the detailed mechanism and stereoselectivity of the chiral phosphine‐catalyzed C(sp2)? H activation/[3 + 3] annulation between Morita–Baylis–Hillman (MBH) carbonates and C,N‐cyclic azomethine imines has been performed. Generally, the catalytic cycle consists of two stages, that is, C(sp2)? H activation companied by the dissociation of the t‐BuO group forming phosphonium enolate, and [3 + 3] cycloaddition process followed by regeneration of the catalyst. The calculated results indicate that C(sp2)? H activation is rate‐determining while [3 + 3] cycloaddition is stereoselectivity‐determining. Furthermore, the advantageous hydrogen bond interactions and less steric hindrance in the RR configurational C? C bond forming transition states should be responsible for the favorability of RR‐configured product among the four possible products. The special role of the organocatalyst was also identified by natural bond orbital (NBO) and global reactivity index (GRI) analyses. The mechanistic insights obtained in the present study should be useful for understanding the novel organocatalytic C(sp2)? H activation and cycloaddition cascade reaction of MBH carbonates, and thus provide valuable clues on rational design of efficient organocatalysts for the C(sp2)? H activation/functionalizations.  相似文献   

20.
This article focuses on the substituent effect on the reactivity and selectivity of the ring‐opening direction in the reaction of five‐membered cyclic carbonates with n‐hexylamine. The reactivity of the cyclic carbonate and the formation selectivity of the adduct with a secondary hydroxyl group increased as a stronger electron‐withdrawing group was introduced at the α‐methylene of the cyclic carbonate. These results are discussed on the basis of the stability of intermediates, primary and secondary alcoholate anions, Mulliken charges on carbonyl carbon, and the bond lengths and orders of the O? C?O single bond. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3678–3685, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号