首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The increasing demand for stable isotopically labeled compounds has led to an increased interest in H/D-exchange reactions at carbon centers. Today deuterium-labeled compounds are used as internal standards in mass spectrometry or to help elucidate mechanistic theories. Access to these deuterated compounds takes place significantly more efficiently and more cost effectively by exchange of hydrogen by deuterium in the target molecule than by classical synthesis. This Review will concentrate on the preparative application of the H/D-exchange reaction in the preparation of deuterium-labeled compounds. Advances over the last ten years are brought together and critically evaluated.  相似文献   

3.
The synthesis and characterization of an iridium polyhydride complex (Ir-H4) supported by an electron-rich PCP framework is described. This complex readily loses molecular hydrogen allowing for rapid room temperature hydrogen isotope exchange (HIE) at the hydridic positions and the α-C–H site of the ligand with deuterated solvents such as benzene-d6, toluene-d8 and THF-d8. The removal of 1–2 equivalents of molecular H2 forms unsaturated iridium carbene trihydride (Ir-H3) or monohydride (Ir-H) compounds that are able to create further unsaturation by reversibly transferring a hydride to the ligand carbene carbon. These species are highly active hydrogen isotope exchange (HIE) catalysts using C6D6 or D2O as deuterium sources for the deuteration of a variety of substrates. By modifying conditions to influence the Ir-Hn speciation, deuteration levels can range from near exhaustive to selective only for sterically accessible sites. Preparative level deuterations of select substrates were performed allowing for procurement of >95% deuterated compounds in excellent isolated yields; the catalyst can be regenerated by treatment of residues with H2 and is still active for further reactions.

The synthesis and characterization of an iridium polyhydride complex (Ir-H4) supported by an electron-rich PCP framework and capable of mild hydrogen/deuterium exchange catalysis is described.  相似文献   

4.

Editorial

Focus on H/D exchange of proteins in solution  相似文献   

5.
The air-stable complex Cp(PMe(3))IrCl(2) efficiently catalyzes the exchange of deuterium from D(2)O into both activated and unactivated C-H bonds of organic molecules without added acid or stabilizers. Selectivity is observed in many cases, with activation of primary C-H bonds occurring preferentially. A number of new stoichiometric transformations involving the iridiym catalyst precursor are also presented, including an oxidation-decarbonylation reaction with primary alcohols.  相似文献   

6.
[reaction: see text] A general and in situ D2 gas generation method using 10% Pd/C-catalyzed H2-D2 exchange reaction in a H2-D2O system has been developed. H2 gas sealed in a reaction flask was efficiently converted into nearly pure D2 gas, which can be used for the reductive deuteration of substrates possessing reducible functionalities within the molecule.  相似文献   

7.
The gas phase H/D exchange reactions of bradykinin (M + 3H)3+ ions with D2O and DI were monitored in a quadrupole ion trap mass spectrometer. The H/D exchange kinetics of both chemical probes (D2O and DI) indicate the presence of two noninterconverting reactive gas phase ion populations of bradykinin (M + 3H)3+ at room temperature. The H/D exchange involving DI, however, generally proceeds faster than that involving D2O. The rate observations described here can be rationalized on the basis of the "relay mechanism" (see Campbell et al. J. Am. Chem. Soc. 1995, 117, 12840-12854) recently proposed to account for H/D exchange between D2O and gaseous protonated polypeptides. The higher exchange rate with DI is believed to arise primarily as a result of its lower gas-phase acidity relative to that of D2O and, secondarily, as a result of the longer bond length of DI relative to that of OD in D2O.  相似文献   

8.
Statistical analysis of data from 39 proteins (13 766 amino acid residues) digested with immobilized porcine pepsin under conditions compatible with hydrogen/deuterium (H/D) exchange (<1 degrees C, <30 s) was performed to examine pepsin cleavage specificity. The cleavage of pepsin was most influenced by the amino acid residue at position P1. Phe and Leu are favored residues each with a cleavage probability greater than 40%. His, Lys, Arg, or Pro residues prohibit cleavage when found at the P1 position. Pro also cannot be at position P2 (cleavage probability <0.3%). Occupation of the P3 position by His, Lys, or Arg, or occupation of the P2' position by Pro, also leads to very little cleavage (cleavage probability <1.7%). The average cleavage probability over the entire data set was 13.6%, which is slightly lower than the value previously obtained by Powers et al. (14.8%). This is due, in part, to the larger protein sizes used in the current study. While the specificity of pepsin was similar to that previously observed, higher selectivity was observed in the present study due to less experimental variation in the conditions used to generate our database.  相似文献   

9.
10.
Gas-phase hydrogen/deuterium exchange of six deprotonated dinucleotides with CD(3)OD was performed in the second hexapole of a Fourier transform ion-cyclotron resonance (FTICR) mass spectrometer. To complete these experiments, dynamic simulations were carried out to investigate the different conformations adopted by the dinucleotides. In the experimental conditions and in integrating the experimental and theoretical results, H/D exchange was shown to be controlled by hydrogen accessibility and not by the chemical nature of the heteroatom bearing the exchangeable hydrogen. A model including simultaneous H/D exchanges at the experimental time scale was used to reproduce the dinucleotide H/D exchange kinetic plots. The relay mechanism was not relevant for dinucleotides. This allowed the H/D exchange rates to be directly linked to conformations.  相似文献   

11.
H/D isotopic exchange between H(2)O and D(2)O molecules was studied at the surface of ice films at 90-140 K by the technique of Cs(+) reactive ion scattering. Ice films were deposited on a Ru(0001) substrate in different compositions of H(2)O and D(2)O and in various structures to study the kinetics of isotopic exchange. H/D exchange was very slow on an ice film at 95-100 K, even when H(2)O and D(2)O were uniformly mixed in the film. At 140 K, H/D exchange occurred in a time scale of several minutes on the uniform mixture film. Kinetic measurement gave the rate coefficient for the exchange reaction, k(140 K)=1.6(+/-0.3) x 10(-19) cm(2) molecule(-1) s(-1) and k(100 K)< or =5.7(+/-0.5) x 10(-21) cm(2) molecule(-1) s(-1) and the Arrhenius activation energy, E(a)> or =9.8 kJ mol(-1). Addition of HCl on the film to provide excess protons greatly accelerated the isotopic exchange reaction such that it went to completion very quickly at the surface. The rapid reaction, however, was confined within the first bilayer (BL) of the surface and did not readily propagate to the underlying sublayer. The isotopic exchange in the vertical direction was almost completely blocked at 95 K, and it slowly occurred only to a depth of 3 BLs from the surface at 140 K. Thus, the proton transfer was highly directional. The lateral proton transfer at the surface was attributed to the increased mobility of protonic defects at the molecularly disordered and activated surface. The slow, vertical proton transfer was probably assisted by self-diffusion of water molecules.  相似文献   

12.
A mass spectrometry and Density Functional Theory study of gas-phase H/D exchange in protonated Ala, Cys, Ile, Leu, Met, and Val is reported. Site-specific rate constants were determined and results identify the alpha-amino group as the protonation site. Lack of exchange on the Cys thiol group is explained by the absence of strong intramolecular hydrogen bonding within the reaction complex. In aliphatic amino acids the presence of a methyl group at the beta-C atom was found to lower the site-specific H/D exchange rate for amino hydrogens. Study of the exchange mechanism showed that isotopic exchange occurs in two independent reactions: in one, only the carboxylic hydrogen is exchanged and in the other, both carboxylic and amino group hydrogens exchange. The proposed reaction mechanisms, calculated structures of various species, and a number of structural findings are consistent with experimental data.  相似文献   

13.
Isotope exchange in low pressure cold plasmas of H(2)/D(2) mixtures has been investigated by means of mass spectrometric measurements of neutrals and ions, and kinetic model calculations. The measurements, which include also electron temperatures and densities, were performed in a stainless steel hollow cathode reactor for three discharge pressures: 1, 2 and 8 Pa, and for mixture compositions ranging from 100% H(2) to 100% D(2). The data are analyzed in the light of the model calculations, which are in good global agreement with the experiments. Isotope selective effects are found both in the surface recombination and in the gas-phase ionic chemistry. The dissociation of the fuel gas molecules is followed by wall recycling, which regenerates H(2) and D(2) and produces HD. Atomic recombination at the wall is found to proceed through an Eley-Rideal mechanism, with a preference for reaction of the adsorbed atoms with gas phase D atoms. The best fit probabilities for Eley-Rideal abstraction with H and D are: γ(ER H) = 1.5 × 10(-3), γ(ER D) = 2.0 × 10(-3). Concerning ions, at 1 Pa the diatomic species H(2)(+), D(2)(+) and HD(+), formed directly by electron impact, prevail in the distributions, and at 8 Pa, the triatomic ions H(3)(+), H(2)D(+), HD(2)(+) and D(3)(+), produced primarily in reactions of diatomic ions with molecules, dominate the plasma composition. In this higher pressure regime, the formation of the mixed ions H(2)D(+) and HD(2)(+) is favoured in comparison with that of H(3)(+) and D(3)(+), as expected on statistical grounds. The model results predict a very small preference, undetectable within the precision of the measurements, for the generation of triatomic ions with a higher degree of deuteration, which is probably a residual influence at room temperature of the marked zero point energy effects (ZPE), relevant for deuterium fractionation in interstellar space. In contrast, ZPE effects are found to be decisive for the observed distribution of monoatomic ions H(+) and D(+), even at room temperature. The final H(+)/D(+) ratio is determined to a great extent by proton (and deuteron) exchange, which favours the enhancement of H(+) and the concomitant decrease of D(+).  相似文献   

14.
15.
The adsorption of normal and -methylated series arenes on rhodium supported on two kinds of AlPO4 has been studied by using a gas-solid chromatographic technique. The adsorption process was exothermic (Hads<0) and non spontaneous (Gads>0) the relative adsorption constants being fitted to the Pavelich-Taft equation in which the electrical effect of the alkyl substituent is the main influence.
- , AlPO4, - . (Hads>0) (Gads<0). -, .
  相似文献   

16.
Rhodium nanoparticles dispersed by a CO2 microemulsion are effective catalysts for rapid hydrogenation of arenes in supercritical CO2.  相似文献   

17.
We describe the improvement of a novel approach to investigating hydrogen/deuterium (H/D) exchange kinetics in biomolecules using transmission infrared spectroscopy. The method makes use of a Fourier transform infrared spectrometer coupled with a microdialysis flow cell to determine exchange rates of labile hydrogens. With this cell system, the monitoring of exchange reactions has been studied here as a function of some cell characteristics such as: (a) dialysis membrane surface contacting both the H2O and D2O compartments; (b) molecular cutoff of dialysis membrane; and (c) distance between the cell-filling holes. The best improvement has been obtained by increasing the dialysis membrane surface followed by increase of molecular cutoff. However, not significant differences were found using various distances between filling holes. The fastest exchange rate which can be measured with the cell system used here is found to be k = 0.41 ± 0.02 min−1, that is, about threefold greater than the one got in a previous work. This microdialysis flow cell has been used here for the study of H/D exchange in nucleic acids with subsequent structural analysis by 2D correlation spectroscopy.  相似文献   

18.
The H/D isotope exchange of C2D4 adsorbed on an Ir surface has been studied by the thermal desorption method. Only deuterium atoms detached from the molecule after its adsorption on the metal surface participate in the exchange with a relatively high rate.
H/D C2D4, Ir, . , , .
  相似文献   

19.
The method of controlled H/D isotope exchange in acid media has been used to study the effect of the heteroatom and the substituents in 9-R-sym-octahydro-10-oxonia(chalcogenonia)anthracene perchlorates on the mobility of hydrogen atoms in the -methylene units of alicyclic rings condensed with heteroaromatic rings. It has been established that in a group of aryl-substituted salts the mobility of the hydrogen atoms increases in the series S+++, which corresponds to a decrease in thermodynamic stability of the chalcogenopyrylium cations. In a group of unsubstituted salts (R=H) the order of reactivity of the methylene groups is O+++ and corresponds to the increasing orbital electrophilicity and complexing ability of these cations.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 463–467, April, 1993.  相似文献   

20.
The gas phase H/D exchange reaction of bradykinin ions, as well as fragment ions of bradykinin generated through collisions in an orifice skimmer region, have been studied with a linear quadrupole ion trap (LIT) reflectron time-of-flight (rTOF) mass spectrometer system. The reaction in the trap takes only tens of seconds at a pressure of few mTorr of D2O or CD3OD. The exchange rate and hydrogen exchange level are not sensitive to the trapping q value over a broad range, provided q is not close to the stability boundary (q = 0.908). The relative rates and hydrogen exchange levels of protonated and sodiated +1 and +2 ions are similar to those observed previously by others with a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer system. The doubly and triply protonated ions show multimodal isotopic distributions, suggesting the presence of several different conformations. The y fragment ions show greater exchange rates and levels than a or b ions, and when water or ammonia is lost from the fragment ions, no exchange is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号