首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The problem of exciton light absorption in quasi-two-dimensional inhomogeneous systems in a strong transverse magnetic field H is analyzed. We assume that a random Gaussian field (“white noise”) acting separately on an electron and a hole is due to (1) fluctuations in the quantum well thickness or (2) fluctuations in the concentrations of the solid solution components. The problem of a magnetoexciton in a random Gaussian white noise field has been reduced to the problem of the motion in an H-dependent effective field of a single particle with the effective magnetic mass of the exciton, which is a function of the magnetic field and parameters of the quantum wells, in a field characterized by “colored noise,” whose correlation function is different from that of the white noise field. In this approximation, the problem of a magnetoexciton in isolated and coupled quantum dots is considered. In the coherent-potential approximation, the exciton absorption in random fields of the first and second type in single and coupled quantum wells has been calculated. The absorption decreases as H increases in the range of strong magnetic fields, which is in agreement with experimental data. Zh. éksp. Teor. Fiz. 114, 1451–1465 (October 1998)  相似文献   

2.
A Mott exciton in coupled quantum wells in a transverse magnetic field H is considered. An expression for the exciton spectrum in an arbitrary magnetic field for large separations D between quantum wells containing an electron (e) and a hole (h) is given. The exciton spectrum in a strong magnetic field for different Landau levels at arbitrary D has been calculated. Changes in the parameter D/l, where is the magnetic length, cause rearrangement of the magnetoexciton dispersion curves ℰ(P), where P is the conserved “magnetic” momentum, which is a function of the separation between the electron and hole in the plane of the quantum wells. Off-center (“roton”) extrema occur only for D/l,<(D/l)cr, where (D/l)cr is a function of the exciton quantum numbers n and m. The magnetoexciton effective mass in states with magnetic quantum number m=0 monotonically increases with H and D, while in states with m≠0 it is a nonmonotonic function of D/l. The probability of generating an exciton in coupled quantum wells increases with H. Absorption of electromagnetic radiation due to transitions between excitonic levels in coupled quantum wells is discussed. For an exciton containing a heavy hole the oscillator strengths increase with H and the oscillator strengths decrease. Zh. éksp. Teor. Fiz. 112, 1791–1808 (November 1997)  相似文献   

3.
The effect of a random field caused by impurities, interface roughness and so on, on the optical properties and superfluidity of a quasi-two-dimensional system of excitons is studied. The influence of a random field on the density of the superfluid component of excitonic systems at low temperatures is investigated. For quasi-two-dimensional excitonic systems in a random field the Kosterlitz–Thouless temperature in the superfluid state is calculated. The superfluidity and Bose–Einstein condensation of indirect excitons in coupled quantum dots are studied. Magnetoexciton light absorption in the disordered quantum wells is considered. The two-particle problem of the magnetoexciton motion in the external field depending on the external magnetic field is reduced to the one-particle motion with effective magnetic mass in some effective field. The energy and optical absorption of the magnetoexciton in a single and coupled quantum dots are studied using the effective-magnetic-mass Hamiltonian. In the coherent potential approximation the coefficient of magnetoexciton optical absorption in single and coupled quantum wells is calculated. In the strong magnetic fields the exciton peak decreases with magnetic field increasing in accordance with the experimental data. The localization of direct and indirect magnetoexcitons is investigated. Received: 14 April 2000 / Accepted: 17 April 2000 / Published online: 6 September 2000  相似文献   

4.
Luminescence and luminescence excitation spectra are used to study the energy spectrum and binding energies of direct and spatially indirect excitons in GaAs/AlaAs superlattices, with different widths of the electron and hole minibands, located in a high magnetic field perpendicular to the heterolayers. It is found that the ground state of the indirect excitons formed by electrons and holes and spatially separated between neighboring quantum wells lies between the ls ground state of the direct excitons and the continuum threshold for dissociated exciton states in the minibands. Indirect excitons in superlattices have a significant oscillator strength when the binding energy of the exciton exceeds the order of the width of the resulting miniband. The behavior of the binding energy of direct and indirect heavy hole excitons during changes in the tunneling coupling between the quantum wells is established. It is shown that a strong magnetic field, which intensifies the Coulomb interaction between the electron and hole in an exciton, weakens the bond in a system of symmetrically bound quantum wells. The spatially indirect excitons studied here are analogous to first order Wannier-Stark localized excitons in superlattices with inclined bands (when an electrical bias is applied), but in the present case the localization is of purely Coulomb origin. Zh. éksp. Teor. Fiz. 112, 1106–1118 (September 1997)  相似文献   

5.
《Physics letters. A》2001,282(6):407-414
Two schemes for steady stimulated phonon generation (saser, i.e., phonon laser) are proposed. The first scheme exploits a narrow-gap indirect semiconductor or analogous indirect gap semiconductor heterostructure where the tuning into resonance of one-phonon transition of electron–hole recombination can be carried out by external pressure, magnetic or electric fields. The second scheme uses one-phonon transition between direct and indirect exciton levels in coupled quantum wells. The tuning into the resonance of this transition can be accomplished by engineering of dispersion of indirect exciton by external in-plane magnetic and normal electric fields. In the second scheme the magnitude of phonon wave vector is determined by magnitude of in-plane magnetic field and, therefore, such a saser is tunable. Both schemes are analyzed and estimated numerically.  相似文献   

6.
Luminescence and luminescence excitation spectra are used to study the energy spectrum and binding energies of direct and spatially indirect excitons in GaAs/AlGaAs superlattices having different electron and hole miniband widths in high magnetic fields perpendicular to the heterolayers. The ground state of the indirect excitons formed by electrons and holes which are spatially distributed among neighboring quantum wells is found to lie between the ground 1s state of the direct excitons and the threshold of the continuum of dissociated exciton states in the minibands. The indirect excitons have a substantial oscillator strength when the binding energy of the exciton exceeds the scale of the width of the resulting miniband. It is shown that a high magnetic field shifts a system of symmetrically bound quantum wells toward weaker bonding. At high exciton concentrations, spatially indirect excitons are converted into direct excitons through exciton-exciton collisions. Fiz. Tverd. Tela (St. Petersburg) 40, 833–836 (May 1998)  相似文献   

7.
The electronic and optical properties of exciton states in GaInNAs/GaAs coupled quantum well (CQW) structure have been theoretically investigated by solving the Schrödinger equation in real space. The effect of well width on the exciton states has been also studied by varying the well width from 5?nm to 10?nm in asymmetric structures. The electron, hole and exciton states are calculated in the presence of an applied electric field. It is found that there are two direct (bright) exciton states with the largest oscillator strengths. Their energies weakly depend on the electric field due to the compensation between the blue shift and red shift of the electron–hole pair states. In addition, these two states are overlap in the case of symmetric CQWs and one of them is then shifted to higher energy in asymmetric CQWs. The ground state exciton has the binding energy of approximately 7.3?meV and decrease to around 3.0?meV showing the direct to indirect transition of the ground state. The direct–indirect crossover is observed at different electric field for different structure. It happens at the electric field when the e1–e2 electron anticrossing or h1–h2 hole anticrossings is observed, so that the crossover can be controlled by the well width of CQWs structure.  相似文献   

8.
We report the first studies of exciton luminescence spectra from asymmetric double quantum wells (DQWs) of very similar width. The DQWs were of GaAs/AlGaAs and the differences in widths of the coupled wells were one or two monolayers. The coupled direct and indirect exciton states anticross with a resonance splitting of 1.33 meV. An additional luminescence line appearing at low temperatures is identified as a localized indirect exciton. Fiz. Tverd. Tela (St. Petersburg) 39, 735–739 (April 1997)  相似文献   

9.
Based on the framework of effective-mass approximation and variational approach, optical properties of exciton are investigated theoretically in ZnO/MgxZn1−xO vertically coupled quantum dots (QDs), with considering the three-dimensional confinement of electron and hole pair and the strong built-in electric field effects due to the piezoelectricity and spontaneous polarization. The exciton binding energy, the emission wavelength and the oscillator strength as functions of the different structural parameters (the dot height and the barrier thickness between the coupled wurtzite ZnO QDs) are calculated with the built-in electric field in detail. The results elucidate that structural parameters have a significant influence on the exciton state and optical properties of ZnO coupled QDs. These results show the optical and electronic properties of the quantum dot that can be controlled and also tuned through the nanoparticle size variation.  相似文献   

10.
Optical-resonance-Raman scattering by acoustic phonons is used to study the effect of an electric field on the state of excitons in GaAs/AlAs superlattices. When the energy of the exciting photon coincides with the energy of an exciton bound to Wannier-Stark states of a heavy hole and electron with Δn=0,±1, the acoustic Raman scattering is enhanced. Oscillations in the intensity of the Raman spectrum in the electric field are explained by resonance delocalization of the exciton ground state as it interacts with Wannier-Stark states of neighboring quantum wells or with Wannier-Stark states of a higher electron miniband. Fiz. Tverd. Tela (St. Petersburg) 40, 827–829 (May 1998)  相似文献   

11.
The lifetime of electrostatically trapped indirect excitons in a field-effect structure based on coupled AlGaN/GaN quantum wells has been theoretically studied. Within the plane of a double quantum well, indirect excitons are trapped between the surfaces of the AlGaN/GaN heterostructures and a semitransparent metallic top gate. The trapping mechanism has been assumed to be a combination of the quantum confined Stark effect and local field enhancement. In order to study the trapped exciton lifetime, the binding energy of indirect excitons in coupled quantum wells is calculated by finite difference method in the presence of an electric field. Thus, the lifetime of trapped excitons is computed as a function of well width, AlGaN barrier width, the position of double quantum well in the device and applied voltage.  相似文献   

12.
The evolution of indirect exciton luminescence in AlAs/GaAs coupled quantum wells after excitation by pulsed laser radiation has been studied in strong magnetic fields (B⩽12 T) at low temperatures (T⩾1.3 K), both in the normal regime and under conditions of anomalously fast exciton transport, which is an indication of the onset of exciton superfluidity. The energy relaxation rate of indirect excitons measured in the range of relaxation times between several and several hundreds of nanoseconds is found to be controlled by the properties of the exciton transport, specifically, this parameter increases with the coefficient of excitonic diffusion. This behavior is qualitatively explained in terms of migration of excitons between local minima of the random potential in the plane of the quantum well. Zh. éksp. Teor. Fiz. 114, 1115–1120 (September 1998)  相似文献   

13.
The three-body restricted problem for X ? and X + trions when a spatially separated exciton and electron or hole are located in the parallel quantum wells (QW) is reduced to the 2D three body problem for the exciton and the projection of the electron or hole on the plane of the excitonic QW. In the limit of a large spatial separation of the QWs the eigenfunctions and energy spectrum for X ? and X + trions are obtained analytically. The 2D Wigner crystallization of the trions in the coupled QWs is discussed.  相似文献   

14.
Direct and indirect excitons in coupled quantum wells and in coupled quantum dots are studied. We consider excitons with two-dimensional, quasi-two-dimensional and three-dimensional carriers. Problems were investigated for a wide range of characteristic parameters—confining to potential steepness, distances between quantum wells or dots, effective width of wells and magnetic fields. The mutual influence of the controlling parameters of the problem on exciton properties is analyzed. Energy and wave function spectra were calculated and dispersion law and effective masses were obtained.  相似文献   

15.
The formation of a superfluid exciton liquid in a system of spatially separated electrons and holes in a system of two coupled quantum wells is predicted and its properties are investigated. The ground-state energy and the equilibrium density of the exciton liquid are calculated as functions of distance D between the quantum wells. The properties of a rarefied exciton gas with dipole-dipole repulsions are considered, where this gas is the metastable phase for D<1.9a* and the stable phase for D<1.9a* (a* is the radius of the two-dimensional exciton). The gas-liquid quantum transition is examined for increasing D. The Berezinskii-Kosterlitz-Thouless transition temperatures, at which superfluidity arises in the system, are found for different values of D. Possible experimental manifestations of the predicted effects are discussed. Zh. éksp. Teor. Fiz. 111, 1879–1895 (May 1997)  相似文献   

16.
An analysis is made of the region of existence of crystalline order in a system of spatially separated electrons (e) and holes (h) in two coupled quantum wells for various concentrations n, temperatures T, and distances D between the layers. A study is also made of crystallization in a system of electrons in semiconductor structures near a metal electrode for various distances d between the semiconductor and the metal. Calculations of the crystalline phase were made using variational calculations of the ground-state energy of the system allowing for pairing of quasiparticles with nonzero momentum. For a system of two coupled quantum wells, regions in (T,n,D) space are determined in which electron (or hole) charge-density waves exist in each layer and regions where these charge-density waves are in phase, in other words, indirect excitons (or pairs with spatially separated electrons and holes) interacting as electric dipoles, become crystallized. In the electron system in semiconductor structures near a metal electrode, regions of existence of an electron crystal are also obtained in (T,n,D) space, where over large distances the electrons interact as electric dipoles because of image forces. Fiz. Tverd. Tela (St. Petersburg) 40, 1350–1355 (July 1998)  相似文献   

17.
The problem of an exciton in the cylindrical nanostructure exposed to an external static magnetic field is investigated. The theoretical model assumes anisotropic masses which are different inside and outside the nanostructure. The confinement potential has finite value at the boundaries and magnetic field is parallel to the axis of the cylinder. The screened Coulomb interaction between an electron and a hole is assumed. The consistent mathematical procedure is developed to calculate the magnetoexciton eigenfunctions and eigenenergies. Our method applies to the systems exhibiting cylindrical symmetry where, due to confinement effects accompanied by the e-h Coulomb interaction, the separation of relative- and center-of-mass motion is not possible. Numerical calculations have been performed for the quantum disk, the cylinder and the quantum rod. The magnetic field dependent energy spectrum and corresponding wave functions, expressed in terms of known one-particle electron and hole eigenfunctions, are calculated. Additionally, we point out the different role of Coulomb interaction in every case.  相似文献   

18.
Binding energies of Wannier excitons in a quantum well structure consisting of a single slab of GaAs sandwiched between two semi-infinite slabs of Ga1?xAlxAs are calculated using a variational approach. Due to reduction in symmetry along the axis of growth of these quantum well structures and the presence of band discontinuities at the interfaces, the degeneracy of the valence band of GaAs is removed leading to two exciton systems, namely, the heavy hole exciton and the light hole exciton. The variations of the binding energies of these two excitons as a function of the size of the GaAs quantum wells for various values of the heights of the potential barrier are calculated and their behavior is discussed.  相似文献   

19.
The temperature T c of the Kosterlitz-Thouless transition to a superfluid state for a system of magnetoexcitons with spatially separated electrons e and holes h in coupled quantum wells is obtained as a function of magnetic field H and interlayer separation D. It is found that T c decreases as a function of H and D at fixed exciton density n ex as a result of an increase in the exciton magnetic mass. The highest Kosterlitz-Thouless transition temperature as a function of H increases (at small D) on account of an increase in the maximum magnetoexciton density n ex versus magnetic field, where n ex is determined by a competition between the magnetoexciton energy and the sum of the activation energies of incompressible Laughlin fluids of electrons and holes. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 5, 332–337 (10 September 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

20.
We study the effect of an electric field applied normal to the layers on the binding energy of charged excitons (or trions) in GaAs quantum wells. We find that, in contrast to the neutral exciton, their binding energy is sharply reduced by modest electric fields. The effect is stronger for the positively charged exciton than the negatively charged one. The ionisation of the excess carrier is explained by the field-induced polarisation of the electron and hole subband wave functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号