首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bige Y  Hanfeng Z  Rong W 《Ultrasonics》2006,44(2):211-215
The mean scatterer spacing is considered to be an important parameter for describing ultrasonic scattering and characterization of biological tissue. Autoregressive models are widely used in parametric techniques for spectral estimation. In this paper, we describe the results of a careful examination of the mean scatterer spacing parameter in normal and pathological breast tissues in vivo using the autoregressive cepstrum. Our experimental results carried out at 4.5 MHz using weakly focused pulse-echo single element transducer show that the mean scatterer spacing in normal breast tissues in vivo is 1.25+/-0.21 mm whereas in several pathological breast tissues, it is between 0.82+/-0.10 and 1.09+/-0.07 mm. These results indicate good correlation with microstructure of breast tissue characterization, and hence the AR cepstrum holds promise that it could be used as an effective method for signal analysis of ultrasonic scattering and characterization of breast tissues scatterers.  相似文献   

2.
Three-dimensional impedance maps (3DZMs) are computational models of acoustic impedance of tissue constructed from histology images. 3DZMs can be analyzed to estimate model-based quantitative ultrasound parameters such as effective scatterer diameter (ESD). In this study, 3DZMs were constructed from normal and fatty rabbit livers. Estimates of ESD were made using the fluid-filled sphere scattering model. Weighting toward smaller scatterer sizes produced ESD estimates of 7.5 ± 1.3 and 7.0 ± 0.3 μm for normal and fatty liver, respectively, approximately the size of a liver cell nucleus. This suggests the nucleus could be a primary source of scattering in liver.  相似文献   

3.
Sun Z  Ying H 《Ultrasonics》1999,37(2):107-122
Non-invasive determination of temperature distribution in biological media is important in many heating-related studies, such as thermal treatment. In this paper, we present an in vitro ultrasound technique for estimation of temperature distribution in heated tissue. Our technique consists of two major steps: (1) using multiple time gates to track echo signals scattered from tissue regions at different depths; (2) estimating temperature distribution based on heating-induced changes of arrival times of echo signals scattered from the targeted tissue regions. We use the conventional cross-correlation approach to track echoes. For temperature estimation, we have developed an iterative method that takes into account the influences of thermal expansion and heating-induced change in the speed of sound on the time of flight. We have introduced a concept of thermal sensitivity of the time of flight and used it to derive a theoretical formula that relates the achievable accuracy on the estimation of tissue temperature to seven parameters. The seven parameters are tissue thermal sensitivity of the time of flight, signal-to-noise ratio, bandwidth and center frequency of the signal, degree of signal decorrelation induced by changes in tissue physical properties during tissue heating, and widths and spacing of the time gates. We tested our technique by computer simulation, using a random discrete scatterer model and temperature distribution data acquired in our laser heating experiments on prostate tissue of live dog. Simulation results showed that our technique could accurately estimate the temperature distribution in the heated tissue. Our technique is fast in terms of computation and could be used as a research tool for in vitro real-time monitoring of temperature distribution in tissue under hyperthermal heating.  相似文献   

4.
Theoretical formulations are developed, based on mathematical models of inhomogeneous continua for the expected angular variation of bulk scattering from human and animal tissues. These results are compared with experimental data on angular scattering from liver, muscle, and blood, reported in a companion paper [J. Acoust. Soc. Am. 79, 2034-2047 (1986)], and deductions are drawn as to the appropriateness of the various models for representing the mechanical structure of the different tissues. On this basis, the experimental data and theoretical formulations are used to derive estimates, appropriate to the frequency range of observation (4-7 MHz), of correlation distance (or effective scatterer spacing) d, the local variabilities of density and compressibility, gamma rho = delta rho/rho and gamma kappa = delta kappa/kappa 0, and their ratio gamma rho/gamma kappa. For blood, liver, and skeletal muscle, the values derived at 6 MHz for d are approximately 5, 55, and 75 microns and for gamma rho/gamma kappa are 0.5, 0.15, and 0.28, respectively. These results are, in particular, at variance with the commonly made assumption, based on evidence from low-frequency measurements, that the ratio gamma rho/gamma kappa is sufficiently small that density terms can be ignored in calculations of human tissue scattering.  相似文献   

5.
We have studied the possibility of solving the inverse scattering problem in the Born approximation, i.e., the reconstruction of scatterer images from the measured set of echo signals. We have considered generalization of the classical combined SAFT (C-SAFT) algorithm to the case of multiple reflections from uneven boundaries of the tested object taking into account the transformation of the wave type for several positions of the antenna grid, which makes it possible to obtain high-quality scatterer images. Representation of the direct problem in matrix form makes it possible to switch to solving the inverse problem, which can be solved using the Tikhonov regularization procedure, because it is an ill-posed. We have considered the possibility of using the entropy of the image estimate as the stabilizing functional that forms the essence of the maximum entropy method (MEM). The advantage of the MEM over the conventionally used linear C-SAFT method has been shown. The ray model taking into account reflections of rays from the boundaries of the tested object with uneven boundaries has been used for constructing the function estimate. We have demonstrated the ability of the MEM to obtain the scatterer images with superresolution and to suppress the “side lobes” of the function of the point scattering on the collapsed set of echo signals. The use of echo signals reflected from the boundaries of the tested object makes it possible to reconstruct the scatterer shape more exactly. Examples of images reconstructed by the MEM on echo signals obtained in the numerical and model experiments have been presented.  相似文献   

6.
We numerically calculate the reliability with which one can optically determine the presence or absence of an individual scatterer in a randomly occupied three-dimensional array of well-localized, coherently radiating scatterers. The reliability depends on the ratio of lattice spacing to wavelength and on the numerical aperture of the imaging system. The behavior can be qualitatively understood by considering the dependence of Bragg scattering modes on lattice spacing. These results are of interest for atomic implementations of quantum information processing.  相似文献   

7.
We present a novel endoscopic fiber bundle probe incorporated in a Fourier-domain angle-resolved low coherence interferometry system for the measurement of depth-resolved angular scattering distributions to permit the determination of scatterer size via elastic scattering properties. Depth resolution is achieved with a superluminescent diode via a Mach-Zehnder interferometer. The sample is illuminated with a collimated beam, and a Fourier plane image of the backscattered light is collected by a coherent fiber bundle. The angular scattering distribution relayed by the fiber bundle is mixed with the reference field and made to coincide with the input slit of an imaging spectrograph. The data collected are processed in real time, producing a depth-resolved angular scattering distribution in 0.37 s. The data are used to determine the sizes of polystyrene microspheres with subwavelength precision and accuracy.  相似文献   

8.
The DORT (French acronym for Décomposition de l’Opérateur de Retournement Temporel) method is a novel approach for active detection and focusing of acoustic waves on the targets in the scattering medium. This technique involves the determination of the invariant of the time-reversal operator obtained by measurement of the scattering data in a pulse-echo mode. In this paper, a proposed approach based on the DORT method is developed to solve the acoustic inverse scattering problem of a small metallic scatterer. The proposed approach not only estimates the position of the scatterer, but also determines the physical properties of an unknown metallic scatterer such as the shape (cylinder or sphere), the material (density), and the size (radius) in an anisotropic scattering case. Theoretical and numerical simulation results are also studied and investigated to show that the proposed approach can simultaneously characterize all those properties of an unknown metallic scatterer. Moreover, the advantage of the proposed approach is to avoid the complex iterative scheme in solving the direct scattering problem and results in smaller computational load and faster implementation.  相似文献   

9.
Aiello A  Woerdman JP 《Optics letters》2005,30(13):1599-1601
We analyze an experimental setup in which a quasi-monochromatic spatially coherent beam of light is used to probe a paraxial optical scatterer. We discuss the effect of the spatial coherence of the probe beam on the Mueller matrix representing the scatterer. We show that, according to the degree of spatial coherence of the beam, the same scattering medium can be represented by different Mueller matrices. This result should serve as a warning for experimentalists.  相似文献   

10.
The frequency-dependent ultrasound backscatter from tissues contains information about the microstructure that can be quantified. In many cases, the anatomic microstructure details responsible for ultrasonic scattering remain unidentified. However, their identification would lead to potentially improved methodologies for characterizing tissue and diagnosing disease from ultrasonic backscatter measurements. Recently, three-dimensional (3D) acoustic models of tissue microstructure, termed 3D impedance maps (3DZMs), were introduced to help to identify scattering sources [J. Mamou, M. L. Oelze, W. D. O'Brien, Jr., and J. F. Zachary, "Identifying ultrasonic scattering sites from 3D impedance maps," J. Acoust. Soc. Am. 117, 413-423 (2005)]. In the current study, new 3DZM methodologies are used to model and identify scattering structures. New processing procedures (e.g., registration, interpolations) are presented that allow more accurate 3DZMs to be constructed from histology. New strategies are proposed to construct scattering models [i.e., form factor (FF)] from 3DZMs. These new methods are tested on simulated 3DZMs, and then used to evaluate 3DZMs from three different rodent tumor models. Simulation results demonstrate the ability of the extended strategies to accurately predict FFs and estimate scatterer properties. Using the 3DZM methods, distinct FFs and scatterer properties were obtained for each tumor examined.  相似文献   

11.
I.IntroductionInrecentyears,manyhomeandabroadscholarshavedoneagreatdealofstudiesontissuecharacterizationusingacousticparametersincludingultrasonicattenuationcoefficient,scatteringcoefficiellt,andnonlinearparameterB/Aofbiologicaltissue.Theseresearcheshavelearntmuchknowledgeoftheacousticpropertiesofsofttissue.Butbecauseofthedifferenceinresearchmethodsandtestingconditions,thediscrepa-nceofmeasuredresultsisstilllargeandnosteadycharacterizationmodelcanbeformed-Atthesametime,thestudyofrevealingthe…  相似文献   

12.
基于Wigner-Ville分布用超声回波测量随机介质的特征   总被引:1,自引:0,他引:1       下载免费PDF全文
生物组织微结构具有随机介质的特性,文中构建了生物组织超声散射的一维随机介质模型,提出用Wigner-Ville分布函数方法估计该随机仙擀的空间分布特征,仿真和实验结果表明这一方法具有良好的空间分辨率,能较好地检测出随机介质微小散射元的个数和空间分布同时能精确地保估出散射元平均间距,研究结果表明该方法还具有良好的抗噪声性等优良特性。  相似文献   

13.
Deng Y  Zeng S  Luo Q  Zhang Z  Fu L 《Optics letters》2008,33(1):77-79
We investigate numerically the effects of scatterer sizes on backscattered polarization patterns using the third-order scattering model developed. The calculated results show that both parallel and cross polarization patterns from water suspensions of polystyrene spheres have four-lobe structures of the azimuth dependence of intensities. Particularly, the parallel polarization pattern is sensitive to scatterer sizes, exhibiting good agreement with prior experimental measurements. Furthermore, the polarization patterns from the dysplastic and normal cells with different size distribution widths are calculated and analyzed. The results show that the polarization patterns of dysplastic and normal cells have distinct differences, which might be used for identification of the morphological structure changes of cancer, dysplasia, and regeneration cells.  相似文献   

14.
We consider a measurement of correlated spins at LEP and show that it does not constitute a general test of local-realistic theories via Bell's inequality. The central point of the argument is that such tests, where the spins of two particles are inferred from a scattering distribution, can be described by a local hidden variable theory. We conclude that with present experimental techniques it is not possible to test locality via Bell's inequality at a collider experiment. Finally we suggest an improved fixed-target it is not possible to test locality via Bell's inequality at a collider experiment. Finally we suggest an improved fixed-target experiment as a viable test of Bell's inequality.  相似文献   

15.
We propose a setup to generate nonlocal spin Einstein-Podolsky-Rosen pairs via pair collisions in a 2D interacting electron gas, based on constructive two-particle interference in the spin-singlet channel at the pi/2 scattering angle. We calculate the scattering amplitude via the Bethe-Salpeter equation in the ladder approximation and small r(s) limit and find that the Fermi sea leads to a substantial renormalization of the bare scattering process. From the scattering length, we estimate the current of spin-entangled electrons and show that it is within experimental reach.  相似文献   

16.
微纳粒子光学散射分析   总被引:1,自引:0,他引:1       下载免费PDF全文
付成花 《物理学报》2017,66(9):97301-097301
为实现利用光学方式对微纳尺度粒子性质的研究,探讨了亚微米线及亚微米球对光电磁波的散射效应.微纳米尺度粒子的光学散射,散射粒子尺寸与入射光波长尺寸可满足米氏(Mie)散射条件.利用Matlab数值模拟的方式,将分析结果以模拟图的形式清晰地展现出来.满足尺寸条件的层状粒子以及任意多个散射粒子存在时对电磁波的散射都可采用Mie散射分析方法,并且针对多粒子散射,分析了散射体位于不同位置时对散射造成的影响.通过分析光学散射光场相关的微分散射截面及近场散射电磁场分布,可得出散射光场随散射角度的变化趋势,以及散射光场受各类因素的影响,包括入射光偏振态、散射粒子尺寸、散射粒子结构及粒子构成层数、散射粒子数量等的影响,也包括一些隐含因素对散射光场的影响,如散射粒子与周围介质的相对折射率.本文的科学意义体现在:与入射光波长尺寸可比的亚微米尺度的粒子,可用作传感器,对于其位移的探测可通过光学方式来实现,而由于粒子本身特性对散射光的影响具有一定的参考价值,从而使通过光学方式对机械位移的读出具有更高准确度.研究结果对于光学方式探测亚微米线机械振动具有指导意义.  相似文献   

17.
It is shown experimentally that the scattering of sound by sound can be observed outside the region of interaction between primary waves and that it carries information on the spatial distribution of the scatterer’s nonlinear characteristics. Based on this effect, a simple method for reconstructing the distribution of the nonlinear parameter by using complex-modulated broadband primary signals and a small number of transmit and receive transducers is implemented. The possibility of reconstructing a two-dimensional distribution of a nonlinear parameter inhomogeneity with the use of only three transducers (two transmitters and one receiver) without additional scanning in the aspect angle is demonstrated. This simple scheme loses information on the low-frequency components of the scatterer’s spatial spectrum and reconstructs the distribution of only the spatial variations of the nonlinear parameter.  相似文献   

18.
The reflection of ultrasound from partially contacting rough surfaces   总被引:1,自引:0,他引:1  
Ultrasound is commonly used to detect and size cracks in a range of engineering components. Modeling techniques are well established for smooth and open cracks. However, real cracks are often rough (relative to the ultrasonic wavelength) and closed due to compressive stress. This paper describes an investigation into the combined effects of crack face roughness and closure on ultrasonic detectability. A contact model has been used to estimate the size and shape of scatterers (voids) at the interface of these rough surfaces when loaded. The response of such interfaces to excitation with a longitudinal ultrasonic pulse over a wide range of frequencies has been investigated. The interaction of ultrasound with this scattering interface is predicted using a finite-element model and good agreement with experiments on rough surfaces is shown. Results are shown for arrays of equi-sized scatterers and a distribution of scatterer sizes. It is shown that the response at high frequencies is dependent on the size, shape, and distribution of the scatterers. It is also shown that the finite-element results depart from the mass-spring model predictions when the product of wave number and scatterer half-width is greater than 0.4.  相似文献   

19.
The process of reconstruction of two-dimensional refractive-absorbing scatterers by the modified Novikov algorithm is considered. A generalization of this algorithm to the multifrequency mode is proposed. The scattering data obtained at different frequencies are combined in the process of the solution using the a priori known frequency dependence of the scatterer function, which yields the constraint equations that are absent in the single-frequency version. It is shown that the problem of reconstruction instability observed in strong scatterers in the single-frequency mode can be removed by the multifrequency mode. The quality of the scatterer estimate in the multifrequency mode is significantly higher than that of the estimate obtained by straightforwardly averaging the single-frequency solutions. Interference resistance of the algorithm is sufficiently high to allow its application in practice.  相似文献   

20.
The properties of scattering phases and density of states in a quantum wire with an attractive scatterer are analyzed. We consider two bound states which couple to a scattering channel and give rise to two Fano resonances. It is shown that varying the parameters of the scatterer (such as its strength and position) produces significantly different effects on the phase behavior and density of states, depending on the subband they occur. These effects stem mainly from the difference between the coupling matrix elements of the two resonant levels with the propagating channel mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号