首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of corrosion of copper in 1M HNO3 solution by four amino acids, proline (Pro), phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Try), has been studied by use of gravimetric and electrochemical polarization measurements. The results obtained the from two different techniques are comparable, and show that Tyr and Try act as good inhibitors of corrosion of copper in 1 mol L?1 HNO3. Correlation between inhibition efficiency and quantum chemical calculations, performed using semi empirical (AM1 and MNDO) and ab-initio methods, is discussed.  相似文献   

2.
7-Cchloro-3-(4-methoxystyryl)quinoxalin-2(1H)-one (CMOSQ) and 7-chloro-2-(4-methoxyphenyl)thieno(3.2-b)quinoxaline (CMOPTQ) have been investigated for mild steel corrosion in 1 M HCl at different concentrations using weight loss measurements, potentiodynamic polarization curves and electrochemical impedance spectroscopy methods. Generally, inhibition efficiency of the investigated compounds was found to depend on inhibitor concentration and their structures. Comparitive results showed that CMOPTQ was the best inhibitor and the inhibition efficiency increased with increasing the concentration and attained 86 and 87 % at 10?3 M of CMOPTQ and 10?3 M of CMOSQ, respectively. Potentiodynamic polarization studies clearly reveal that these inhibitors act essentially as cathodic-type inhibitors. The inhibition efficiency increases with immersion time and reaches 95 % CMOPTQ at 24 h. The electrochemical impedance spectroscopy result showed that these compounds act by formation of film.  相似文献   

3.
The effect of cefazolin (CZ) and cefotaxime (CT) as corrosion inhibitors for carbon steel in 0.5 M H2SO4 solution was investigated by use of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), electrochemical frequency modulation (EFM), and scanning electron microscopy (SEM). CZ and CT acted as mixed-type inhibitors. Inhibition increased with increasing inhibitor concentration and decreased with increasing temperature. Adsorption of the inhibitors obeyed the Langmuir adsorption isotherm. SEM confirmed inhibition by the inhibitors. Inhibition by 5 × 10?4 M CZ and 7 × 10?4 M CT approached 99.6 % and 90.9 %, respectively. The EIS and EFM results were in good agreement with the potentiodynamic data.  相似文献   

4.
The inhibitive effect of 2-cyano-3-hydroxy-4(Ar)-5-anilino thiophene derivatives on the corrosion of 304 stainless steel (SS) in 3 M HCl solution has been investigated by weight loss, galvanostatic polarization techniques, and potentiodynamic anodic polarization in 3.5 % NaCl. The results indicate that these compounds act as inhibitors retarding the anodic and cathodic corrosion reactions. The presence of inhibitors does not change the mechanism of either hydrogen evolution reaction or SS dissolution. The activation energy and some thermodynamic parameters are calculated and discussed. These compounds are mixed-type inhibitors in the acid solution, and their adsorption on the SS surface is found to obey the Temkin adsorption isotherm. The results suggest that the percentage inhibition of these thiophene derivatives increases with increasing inhibitor concentration and decreases with increasing temperature. The synergistic parameter (S) was calculated and found to have a value greater than unity, indicating that the enhanced inhibition efficiency caused by the addition of I?, SCN?, and Br? is only due to a synergistic effect. The relationship between molecular structure and inhibition efficiency was elucidated by quantum-chemical calculations using semi-empirical self-consistent field (SCF) methods.  相似文献   

5.
The effects of expired lansoprazole and rabeprazole on the corrosion protection of carbon steel in phosphoric acid (3.0 ?M) solution were examined by Tafel polarization and electrochemical impedance spectroscopy (EIS). Lansoprazole and rabeprazole concentrations (0.5, 1.0, 5.0 and 10 ?mM) in acid solution were raised, which improved corrosion prevention. Both lansoprazole and rabeprazole as the mixed inhibitors retarded the anodic and cathodic processes, as indicated by polarization data. With the increasing temperature in the range of 25–55 ?°C, the inhibition efficiency drops from 92.9% to 69.3% for lansoprazole and from 94.8% to 74.2% for rabeprazole. The major decrease in the inhibition efficiency with ascending temperature proved the physisorption of the drugs. The activation energies for carbon steel corrosion in H3PO4solution were enhanced from 41.6 ?kJ ?mol?1 to 81.9 ?kJ.mol?1and 85.9 ?kJ ?mol?1 for lansoprazole and rabeprazole, respectively. The influence of temperature on the corrosion process of carbon steel in the acid medium was used to derive the thermodynamic quantities of corrosion. The adsorption of both lansoprazole and rabeprazole on carbon steel followed the Langmuir adsorption isotherm. The polarization data yielded outcomes that were consistent with the results arising from impedance measurements. The theoretical study of both lansoprazole and rabeprazole was done by a density functional theory (DFT) approach to realize the effects of molecular structure on their inhibitive action. Both lansoprazole and rabeprazole contain a higher EHOMO, a lower ELUMO and a lower energy gap than some inhibitors earlier reported as good corrosion inhibitors in the literature.  相似文献   

6.
Inhibition of the corrosion of mild steel in sulfuric acid by extracts of Anacyclus pyrethrum L. (leaves and stems, AP-LS; flowers AP-F; roots, AP-R) has been studied by use of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Anacyclus pyrethrum L. inhibited the corrosion of mild steel in 0.5 M H2SO4 solution. Polarization curves show that the different parts of plants act as anodic type inhibitors. Changes in impedance data (charge transfer resistance, R t, and double layer capacitance, C dl) were indicative of adsorption of the extracts on the metal surface, leading to the formation of protective films. The extent of surface coverage by the inhibitors was determined by measurement of ac impedance; it was found that adsorption of these inhibitors on the mild steel surface obeys the Langmuir adsorption isotherm. Activation energies in the presence and absence of AP-LS and AP-F were obtained by measuring the temperature dependence of the corrosion current.  相似文献   

7.
A new corrosion inhibitor, namely 5-(2-hydroxyphenyl)-1,2,4-triazole-3-thione (5-HTT), has been synthesized and its influence on corrosion inhibition of mild steel in 5 % HCl solution has been studied using weight loss method and electrochemical measurements. Potentiodynamic polarization measurements clearly reveal that the investigated inhibitor is of mixed type, and it inhibits the corrosion of the steel by blocking the active site of the metal. Changes in impedance parameters were indicative of adsorption of 5-HTT on the metal surface, leading to the formation of protective films. The degree of the surface coverage of the adsorbed inhibitors was determined by weight loss measurements, and it was found that the adsorption of these inhibitors on the mild steel surface obeys the Langmuir adsorption isotherm. The effect of the temperature on the corrosion behavior with addition of 5 × 10?4 M of the inhibitor was studied in the temperature range 30–60 °C. The reactivity of this compound was analyzed through theoretical calculations based on density functional theory to explain the different efficiency of these compounds as a corrosion inhibitor.  相似文献   

8.
The inhibition behavior of 6-methyl-4,5-dihydropyridazin-3(2H)-one (MDP) on corrosion of mild steel in 1 M HCl and 0.5 M H2SO4 was investigated using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) measurements. The results indicated that the corrosion inhibition efficiency depends on concentration, immersion time, solution temperature, and the nature of the acidic solutions. It is also noted that MDP is at its the most efficient in 1 M HCl and least in 0.5 M H2SO4. The effect is more pronounced with MDP concentration. It is found that the inhibition efficiency attains 98 % at 5 × 10?3 M in 1 M HCl and 75 % at 5 × 10?2 in 0.5 M H2SO4. Polarization measurements showed that the MDP acts as a mixed inhibitor. EIS diagrams showed that the adsorption of MDP increases the transfer resistance and decreases the capacitance of the interface metal/solution. From the temperature studies, the activation energies in the presence of MDP were found to be superior to those in uninhibited medium. Finally, a mechanism for the adsorption of MDP was proposed and discussed.  相似文献   

9.
The inhibition effect of cetyl trimethyl ammonium bromide (CTAB) on the corrosion of mild steel in 1.0 mol L?1 hydrochloric acid (HCl) has been studied at different temperatures (25–60°C) by weight loss and potentiodynamic polarization methods. The results reveal that CTAB behaves as an effective inhibitor in 1.0 mol L?1 HCl, and the inhibition efficiency increases with the inhibitor concentration. Polarization curves show that CTAB is a mixed-type inhibitor in hydrochloric acid. The results obtained from weight loss and polarizations are in good agreement. The effect of immersion time on corrosion inhibition has also been examined and is discussed. The adsorption of inhibitor on mild steel surface obeys the Langmuir adsorption isotherm equation. Thermodynamic parameters have been obtained by adsorption theory. The inhibition effect is satisfactorily explained by the parameters.  相似文献   

10.
The inhibition of mild steel corrosion in aerated acid mixture of 0.5 N H2SO4 and 0.5 N HCl solution was investigated using potentiodynamic polarization studies, linear polarization studies, electrochemical impedance spectroscopy, adsorption, and surface morphological studies. The effect of inhibitor concentration on corrosion rate, degree of surface coverage, adsorption kinetics, and surface morphology is investigated. The inhibition efficiency increased markedly with increase in additive concentration. The presence of PEG and PVP decreases the double-layer capacitance and increases the charge-transfer resistance. The inhibitor molecules first adsorb on the metal surface following a Langmuir adsorption isotherm. Both PEG and PVP offer good inhibition properties for mild steel and act as mixed-type inhibitors. Surface analysis by scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows that PVP offers better protection than PEG.  相似文献   

11.
The aim of this work is the phytochemical study of the butanolic extract of the aerial parts of Veronica rosea. Four compounds 14 have been isolated using different chromatographic methods. The structures of these compounds were determined by NMR spectral analysis and mass spectroscopy. The adsorption and anticorrosion effects of this extract were investigated towards the corrosion of copper in 1 M HNO3 aqueous by the weight loss technique and potentiodynamic polarization. The results showed that the butanolic extract is a good inhibitor and the inhibition efficiency increases with increasing of concentration of the inhibitor. The adsorption of this extract on the copper specimen surface was spontaneous and obeyed the Langmuir’s adsorption isotherm. Large value of adsorption equilibrium Constant (K ads = 35 L g?1) was obtained. The polarization experiments confirmed the data obtained by gravimetric weight-loss. Tafel plot of polarization curves indicates that the extract acts as a mixed type inhibitor.  相似文献   

12.
The inhibiting impact of natural aqueous extracts of some plants such as curcumin, parsley and cassia bark extracts for the corrosion of carbon steel (C-steel) in 0.5 M H2SO4 solution was inspected utilizing some techniques such as galvanostatic and potentiodynamic anodic polarization and weight loss measurements. Outcomes indicated that the percentage inhibition efficiency increases with increasing the concentration of the extract due to its horizontal adsorption on the C-steel surface. The process of adsorption is followed by the Temkin isotherm. These natural extracts acted as pitting corrosion inhibitors by shifting the pitting potential to more noble values. The sequence of inhibition efficiency of the natural extracts decreases in the following order: cassia bark extract > parsley extract > curcumin extract. This arrangement is related to the molecular size of the major components of the three natural extracts used.  相似文献   

13.
The inhibitory effect of some new synthesized benzamide compounds on corrosion of mild steel in 1 M HCl solution has been studied by use of weight loss measurements and the electrochemical techniques potentiodynamic polarization and electrochemical impedance spectroscopy. The inhibiting action is more pronounced with increasing concentration. Inhibition efficiency is maximum (approximately 99 %) at 10?3 M. Polarization measurements also show that the compounds act as mixed inhibitors. The cathodic curves indicate that reduction of protons at the mild steel surface occurs as a result of a pure activating mechanism. EIS measurements reveal increased transfer resistance with increasing inhibitor concentration. The presence of heteroatoms increases inhibition efficiency without causing a drastic change in adsorption mechanism, which follows the Langmuir isotherm model. Significant correlations were obtained between inhibition efficiency with the chemical indexes calculated, by use of the standard software Gaussian03, on the basis of density functional theory (DFT) at the B3LYP/6-31G** level of theory, indicating that variation of inhibition with inhibitor structure may be explained in terms of electronic properties. The effect of temperature on the corrosion behaviour of steel in 1 M HCl without and with inhibitors at 10?3 M was studied in the temperature range from 308 to 333 K, and the associated activation energy was determined.  相似文献   

14.
In this article, three deferent surfactants as corrosion inhibitor were prepared in two steps. In the first step, maleic anhydride was amidated with dodecylamine to produce 2-ene-4-dodecanamide butanoic acid. In the second step, the resulting product was further esterified with different molecular weights of polyethylene glycol (m.wt. = 200, 400, and 600), namely, polyoxy ethylenyl-x-ene-4-dodecanamide butanoic acid, where x = 2, 4, or 6 according to molecular weights of polyethylene glycol used). The chemical structures of these inhibitors were confirmed by FTIR and 1H NMR. The corrosion inhibition effect of the synthesized inhibitors has been investigated on the carbon steel (type H-11) pipelines in 0.5 M HCl solution by the potentiodynamic polarization method. From the obtained results, it was found that the maximum inhibition efficiency (90.44%) was exhibited by polyoxy ethylenyl-6-ene-4-dodecanamide butanoic acid, while the minimum inhibition efficiency (79.84%) was obtained by polyoxy ethylenyl-2-ene-4-dodecanamide butanoic acid at 200 ppm and 35°C. Also, the values of activation energy and thermodynamic parameters were calculated and discussed. Adsorption of the synthesized inhibitors was found to follow the Langmuir's adsorption isotherm. Mixed physical and chemical adsorption mechanism is proposed.  相似文献   

15.
Some triazole-type organic compounds were tested as corrosion inhibitors for copper in 0.5 M HCl solution at 20°C. Electrochemical (potentiodynamic polarization and polarization resistance measurements) and gravimetric methods were used for this study. The obtained results showed that 3-amino-1,2,4 triazole (ATA) and 3,5 diamino-1,2,4 triazole (DTA) effectively reduce the corrosion rate of copper. The inhibition efficiency (E%) of these compounds increases with their concentrations and attains maximum values at 10−3M and 10−4 for ATA and DTA, respectively. The variation of efficiency with logC shows that these inhibitors are adsorbed on the metallic surface according to the Frumkin adsorption isotherm model.  相似文献   

16.
Corrosion inhibition of indole‐3‐acetic acid and N‐acetyl tryptophan on carbon steel was investigated using polarization and electrochemical impedance spectroscopy (EIS). Polarization results revealed that corrosion inhibitors could reduce the rate of cathodic and anodic reactions on metal surface. EIS analysis showed inhibition efficiency of indoles increases by increasing the inhibitor concentration. The maximum inhibition efficiency was 97% and 80% in solutions containing 10 mM indole‐3‐acetic acid and 10 mM N‐acetyl tryptophan, respectively. The adsorption of inhibitors was found to follow Langmuir isotherm. Adsorption and film formation of inhibitors on the metal substrate were confirmed by calculating thermodynamic adsorption parameter (ΔG0ads) and characterization of exposed metals' surface through contact angle measurements. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The azo-ester, namely 4-(phenyldiazenyl)phenyl 2-furoate (PPF) by a coupling reaction between 4-(phenyldiazenyl)phenol and 2-furoyl chloride in the presence of pyridine was obtained. For characterization of this compound UV–Vis, FTIR, and thermal analysis were used. PPF was investigated as corrosion inhibitor for carbon steel in saline waters using potentiodynamic polarization. Morphology of the surface before and after corrosion was examined by optical microscopy. Potentiodynamic polarization shows that the corrosion current densities decrease and values of polarization resistance and inhibition efficiency increase with PPF concentration reaching a maximum of 89.6 %, at 0.1 mmol L?1.  相似文献   

18.
A ligand, 2-((benzo[d]thiazol-2-ylthio)methyl)-1H-benzo[d]imidazole, and its zinc complex have been synthesized. The structure of these compounds have been determined by spectroscopic techniques and single crystal X-ray diffraction. The corrosion inhibition study of these compounds for steel in 0.5 M H2SO4 medium has also been investigated using potentiodynamic polarization and EIS techniques. The quantum calculations were applied to investigate the relationship between the electronic properties and the corrosion inhibition efficiency of the two benzazoles derivatives. Surface analysis (XRF) indicated that the rust layer formed on the Cu-containing steels was enriched with Cu compounds. Polarization curves revealed that both inhibitors acted as a mixed-type inhibitor.  相似文献   

19.
The effect of purine (concentration range of 1.00 × 10?6?C1.00 × 10?2 M) on the behavior of copper in a 0.5 M Na2SO4 solution (pH 7 and pH 9) was studied using the open circuit potential measurement, potentiodynamic polarization, and chronoamperometry. Potentiodynamic polarization shows that purine acts as a copper corrosion inhibitor in both alkaline and neutral sulfate solutions. The efficiency of inhibition increases as the purine concentration increases. Chronoamperometric results follow the same trend as the results of potentiodynamic polarization. The inhibition effect can also be observed visually by microscopic examination of the electrode surface. Purine is adsorbed on copper surface according to the Langmuir adsorption isotherm.  相似文献   

20.
Corrosion inhibition by triazole derivatives (n-MMT) on mild steel in 5 % hydrochloric acid (HCl) solutions has been investigated by weight loss and electrochemical methods. The results obtained revealed that these compounds performed excellently as corrosion inhibitors for mild steel in HCl solution. Potentiodynamic polarization studies showed that they suppressed both the anodic and cathodic processes and inhibited the corrosion of mild steel by blocking the active site of the metal. The effect of temperature on the corrosion behavior of mild steel in 5 % HCl with the addition of different concentrations of the inhibitors was studied in the temperature range from 303 to 333 K. The associated activation corrosion and free adsorption energies were determined. The adsorption of these compounds on the mild steel surface obeys the Langmuir adsorption isotherm. The effect of molecular structure on the inhibition efficiency has been investigated by quantum chemical calculations. The electronic properties of inhibitors were calculated and are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号