首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In this paper, we carry out further mathematical studies of nonlocal constrained value problems for a peridynamic Navier equation derived from linear state-based peridynamic models. Given the nonlocal interactions effected in the model, constraints on the solution over a volume of nonzero measure are natural conditions to impose. We generalize previous well-posedness results that were formulated for very special kernels of nonlocal interactions. We also give a more rigorous treatment to the convergence of solutions to nonlocal peridynamic models to the solution of the conventional Navier equation of linear elasticity as the horizon parameter goes to zero. The results are valid for arbitrary Poisson ratio, which is a characteristic of the state-based peridynamic model.  相似文献   

2.
We consider the nonlocal formulation of continuum mechanics described by peridynamics. We provide a link between peridynamic evolution and brittle fracture evolution for a broad class of peridynamic potentials associated with unstable peridynamic constitutive laws. Distinguished limits of peridynamic evolutions are identified that correspond to vanishing peridynamic horizon. The limit evolution has both bounded linear elastic energy and Griffith surface energy. The limit evolution corresponds to the simultaneous evolution of elastic displacement and fracture. For points in spacetime not on the crack set the displacement field evolves according to the linear elastic wave equation. The wave equation provides the dynamic coupling between elastic waves and the evolving fracture path inside the media. The elastic moduli, wave speed and energy release rate for the evolution are explicitly determined by moments of the peridynamic influence function and the peridynamic potential energy.  相似文献   

3.
Linearized Theory of Peridynamic States   总被引:1,自引:0,他引:1  
A state-based peridynamic material model describes internal forces acting on a point in terms of the collective deformation of all the material within a neighborhood of the point. In this paper, the response of a state-based peridynamic material is investigated for a small deformation superposed on a large deformation. The appropriate notion of a small deformation restricts the relative displacement between points, but it does not involve the deformation gradient (which would be undefined on a crack). The material properties that govern the linearized material response are expressed in terms of a new quantity called the modulus state. This determines the force in each bond resulting from an incremental deformation of itself or of other bonds. Conditions are derived for a linearized material model to be elastic, objective, and to satisfy balance of angular momentum. If the material is elastic, then the modulus state is obtainable from the second Fréchet derivative of the strain energy density function. The equation of equilibrium with a linearized material model is a linear Fredholm integral equation of the second kind. An analogue of Poincaré’s theorem is proved that applies to the infinite dimensional space of all peridynamic vector states, providing a condition similar to irrotationality in vector calculus.  相似文献   

4.
The peridynamic model is a framework for continuum mechanics based on the idea that pairs of particles exert forces on each other across a finite distance. The equation of motion in the peridynamic model is an integro-differential equation. In this paper, a notion of a peridynamic stress tensor derived from nonlocal interactions is defined. At any point in the body, this stress tensor is obtained from the forces within peridynamic bonds that geometrically go through the point. The peridynamic equation of motion can be expressed in terms of this stress tensor, and the result is formally identical to the Cauchy equation of motion in the classical model, even though the classical model is a local theory. We also establish that this stress tensor field is unique in a certain function space compatible with finite element approximations.  相似文献   

5.
The static and dynamic behaviour of a nonlocal bar of finite length is studied in this paper. The nonlocal integral models considered in this paper are strain-based and relative displacement-based nonlocal models; the latter one is also labelled as a peridynamic model. For infinite media, and for sufficiently smooth displacement fields, both integral nonlocal models can be equivalent, assuming some kernel correspondence rules. For infinite media (or finite media with extended reflection rules), it is also shown that Eringen's differential model can be reformulated into a consistent strain-based integral nonlocal model with exponential kernel, or into a relative displacement-based integral nonlocal model with a modified exponential kernel. A finite bar in uniform tension is considered as a paradigmatic static case. The strain-based nonlocal behaviour of this bar in tension is analyzed for different kernels available in the literature. It is shown that the kernel has to fulfil some normalization and end compatibility conditions in order to preserve the uniform strain field associated with this homogeneous stress state. Such a kernel can be built by combining a local and a nonlocal strain measure with compatible boundary conditions, or by extending the domain outside its finite size while preserving some kinematic compatibility conditions. The same results are shown for the nonlocal peridynamic bar where a homogeneous strain field is also analytically obtained in the elastic bar for consistent compatible kinematic boundary conditions at the vicinity of the end conditions. The results are extended to the vibration of a fixed–fixed finite bar where the natural frequencies are calculated for both the strain-based and the peridynamic models.  相似文献   

6.
Peridynamics is a nonlocal theory of continuum mechanics, which was developed by Silling (2000). Since then peridynamics has been applied to a variety of solid mechanics problems ranging from fracture, damage, failure to wave propagation, buckling, and detonation physics. Since the governing equation of peridynamics is an integro-differential equation, most of the treatment in the literature is often numerical. However, the analytical treatment is very important for the development of the peridynamic theory, which is continually developing at the present time. In this paper, peristatic and peridynamic problems for a 1D infinite rod are analytically investigated. We have developed a method to obtain a valid analytical solution starting from a formal analytical solution, which may be divergent. The primary contribution of the present paper is a systematic analytical treatment of peristatic and peridynamic problems for a 1D infinite rod. Additionally, dispersion curves and group velocities for the materials with three different micromoduli are also studied. It is found from the study that some peridynamic materials can have negative group velocities in certain regions of wavenumber. This indicates that peridynamics can be used for modeling certain types of dispersive media with anomalous dispersion such as the one discussed by Mobley (2007).  相似文献   

7.
The deformation of an infinite bar subjected to a self-equilibrated load distribution is investigated using the peridynamic formulation of elasticity theory. The peridynamic theory differs from the classical theory and other nonlocal theories in that it does not involve spatial derivatives of the displacement field. The bar problem is formulated as a linear Fredholm integral equation and solved using Fourier transform methods. The solution is shown to exhibit, in general, features that are not found in the classical result. Among these are decaying oscillations in the displacement field and progressively weakening discontinuities that propagate outside of the loading region. These features, when present, are guaranteed to decay provided that the wave speeds are real. This leads to a one-dimensional version of St. Venant's principle for peridynamic materials that ensures the increasing smoothness of the displacement field remotely from the loading region. The peridynamic result converges to the classical result in the limit of short-range forces. An example gives the solution to the concentrated load problem, and hence provides the Green's function for general loading problems.  相似文献   

8.
This paper develops a new peridynamic state based model to represent the bending of an Euler–Bernoulli beam. This model is non-ordinary and derived from the concept of a rotational spring between bonds. While multiple peridynamic material models capture the behavior of solid materials, this is the first 1D state based peridynamic model to resist bending. For sufficiently homogeneous and differentiable displacements, the model is shown to be equivalent to Eringen’s nonlocal elasticity. As the peridynamic horizon approaches 0, it reduces to the classical Euler–Bernoulli beam equations. Simple test cases demonstrate the model’s performance.  相似文献   

9.
We study a class of nonlocal operators that may be seen as high order generalizations of the well known nonlocal diffusion operators. We present properties of the associated nonlocal functionals and nonlocal function spaces including nonlocal versions of Sobolev inequalities such as the nonlocal Poincaré and nonlocal Gagliardo–Nirenberg inequalities. Nonlocal characterizations of high order Sobolev spaces in the spirit of Bourgain–Brezis–Mironescu are provided. Applications of nonlocal calculus of variations to the well-posedness of linear nonlocal models of elastic beams and plates are also considered.  相似文献   

10.
A methodology is presented for investigating the dynamics of heterogeneous media using the nonlocal continuum model given by the peridynamic formulation. The approach presented here provides the ability to model the macroscopic dynamics while at the same time resolving the dynamics at the length scales of the microstructure. Central to the methodology is a novel two-scale evolution equation. The rescaled solution of this equation is shown to provide a strong approximation to the actual deformation inside the peridynamic material. The two scale evolution can be split into a microscopic component tracking the dynamics at the length scale of the heterogeneities and a macroscopic component tracking the volume averaged (homogenized) dynamics. The interplay between the microscopic and macroscopic dynamics is given by a coupled system of evolution equations. The equations show that the forces generated by the homogenized deformation inside the medium are related to the homogenized deformation through a history dependent constitutive relation.  相似文献   

11.
The nonlocal peridynamic theory has been proven to be a promising method for the material failure and damage analyses in solid mechanics.Based upon the integrodifferential equations,peridynamics enables predicting the complex fracture phenomena such as spontaneous crack nucleation and crack branching,curving,and arrest.In this paper,the bond-based peridynamic approach is used to study the impact damage in a beam with an offset notch,which is widely used to investigate the mixed I-II crack propagation in brittle materials.The predictions from the peridynamic analysis agree well with available experimental observations.The numerical results show that the dynamic fracture behaviors of the beam under the impact load,such as crack initiation,curving,and branching,rely on the location of the offset notch and the impact speed of the drop hammer.  相似文献   

12.
Convergence of Peridynamics to Classical Elasticity Theory   总被引:1,自引:0,他引:1  
The peridynamic model of solid mechanics is a nonlocal theory containing a length scale. It is based on direct interactions between points in a continuum separated from each other by a finite distance. The maximum interaction distance provides a length scale for the material model. This paper addresses the question of whether the peridynamic model for an elastic material reproduces the classical local model as this length scale goes to zero. We show that if the motion, constitutive model, and any nonhomogeneities are sufficiently smooth, then the peridynamic stress tensor converges in this limit to a Piola-Kirchhoff stress tensor that is a function only of the local deformation gradient tensor, as in the classical theory. This limiting Piola-Kirchhoff stress tensor field is differentiable, and its divergence represents the force density due to internal forces. The limiting, or collapsed, stress-strain model satisfies the conditions in the classical theory for angular momentum balance, isotropy, objectivity, and hyperelasticity, provided the original peridynamic constitutive model satisfies the appropriate conditions.   相似文献   

13.
广义来说, 近场动力学(peri-dynamics,PD)是假设每个物质点在承受一定范围内的非接触相互作用下,研究整个物理系统演化过程的理论,为涉及非连续和非局部相互作用的问题提供了一个统一的数学框架,具有广泛的适用性.在简要介绍诸多工程对于多物理场模型和数值计算软件的迫切需求后,针对现有商用软件在处理结构非连续演化问题时遇到的瓶颈,引入近场动力学理论和方法. 概述近场动力学固体力学模型,系统阐述近场动力学扩散模型和近场动力学多物理场耦合建模的研究现状和进展,主要涉及电子元器件、电子封装和岩土工程领域的多物理场耦合建模,包括热--力、湿--热--力、热--氧、热--力--氧、力--电、热--电、力--热--电、多孔介质的水--力流固相互作用等非耦合、半耦合与完全耦合模型,强调发展耦合方程数值解法的重要性.最后对扩散问题和多物理场耦合问题的近场动力学理论模型、数值算法和工程应用做进一步展望.  相似文献   

14.
广义来说, 近场动力学(peri-dynamics,PD)是假设每个物质点在承受一定范围内的非接触相互作用下,研究整个物理系统演化过程的理论,为涉及非连续和非局部相互作用的问题提供了一个统一的数学框架,具有广泛的适用性.在简要介绍诸多工程对于多物理场模型和数值计算软件的迫切需求后,针对现有商用软件在处理结构非连续演化问题时遇到的瓶颈,引入近场动力学理论和方法. 概述近场动力学固体力学模型,系统阐述近场动力学扩散模型和近场动力学多物理场耦合建模的研究现状和进展,主要涉及电子元器件、电子封装和岩土工程领域的多物理场耦合建模,包括热--力、湿--热--力、热--氧、热--力--氧、力--电、热--电、力--热--电、多孔介质的水--力流固相互作用等非耦合、半耦合与完全耦合模型,强调发展耦合方程数值解法的重要性.最后对扩散问题和多物理场耦合问题的近场动力学理论模型、数值算法和工程应用做进一步展望.   相似文献   

15.
The Cahn–Hilliard–Navier–Stokes system is based on a well-known diffuse interface model and describes the evolution of an incompressible isothermal mixture of binary fluids. A nonlocal variant consists of the Navier–Stokes equations suitably coupled with a nonlocal Cahn–Hilliard equation. The authors, jointly with P. Colli, have already proven the existence of a global weak solution to a nonlocal Cahn–Hilliard–Navier–Stokes system subject to no-slip and no-flux boundary conditions. Uniqueness is still an open issue even in dimension two. However, in this case, the energy identity holds. This property is exploited here to define, following J.M. Ball’s approach, a generalized semiflow which has a global attractor. Through a similar argument, we can also show the existence of a (connected) global attractor for the convective nonlocal Cahn–Hilliard equation with a given velocity field, even in dimension three. Finally, we demonstrate that any weak solution fulfilling the energy inequality also satisfies a dissipative estimate. This allows us to establish the existence of the trajectory attractor also in dimension three with a time dependent external force.  相似文献   

16.
We consider a diffuse interface model which describes the motion of an ideal incompressible mixture of two immiscible fluids with nonlocal interaction in two-dimensional bounded domains. This model consists of the Euler equation coupled with a convective nonlocal Cahn-Hilliard equation. We establish the existence of globally defined weak solutions as well as well-posedness results for strong/classical solutions.  相似文献   

17.
张恒  张雄  乔丕忠 《力学进展》2022,52(4):852-873
近场动力学采用非局部积分计算节点内力, 利用统一数学框架描述空间连续与非连续, 避免了非连续区局部空间导数引起的应力奇异, 数值上具有无网格属性, 可自然模拟材料结构的断裂问题. 本文概述了近场动力学的弹性本构力模型, 系统介绍了近场动力学临界伸长率、临界能量密度以及材料强度相关的键失效准则. 详细介绍了近场动力学在断裂力学领域的研究进展, 包括断裂参数能量释放率与应力强度因子的求解、J积分、混合型裂纹、弹塑性断裂、黏聚力模型、动态断裂、材料界面断裂以及疲劳裂纹扩展等. 最后讨论了断裂问题近场动力学研究的发展方向.   相似文献   

18.
We derive the static and dynamic Green’s functions for one-, two- and three-dimensional infinite domains within the formalism of peridynamics, making use of Fourier transforms and Laplace transforms. Noting that the one-dimensional and three-dimensional cases have been previously studied by other researchers, in this paper, we develop a method to obtain convergent solutions from the divergent integrals, so that the Green’s functions can be uniformly expressed as conventional solutions plus Dirac functions, and convergent nonlocal integrals. Thus, the Green’s functions for the two-dimensional domain are newly obtained, and those for the one and three dimensions are expressed in forms different from the previous expressions in the literature. We also prove that the peridynamic Green’s functions always degenerate into the corresponding classical counterparts of linear elasticity as the nonlocal length tends to zero. The static solutions for a single point load and the dynamic solutions for a time-dependent point load are analyzed. It is analytically shown that for static loading, the nonlocal effect is limited to the neighborhood of the loading point, and the displacement field far away from the loading point approaches the classical solution. For dynamic loading, due to peridynamic nonlinear dispersion relations, the propagation of waves given by the peridynamic solutions is dispersive. The Green’s functions may be used to solve other more complicated problems, and applied to systems that have long-range interactions between material points.  相似文献   

19.
基于Eringen提出的Nonlocal线弹性理论的微分形式本构关系,导出了相应的能量密度表达式,进而得到二维Nonlocal线弹性理论的变分原理.利用变分原理导出了对偶平衡方程和相应的边界条件.进而给出了非局部动力问题的Lagrange函数,并引入对偶变量和Hamilton函数,得到了对偶体系下的变分方程.在Hamilton体系下,通过变分得到了二维Nonlocal线弹性理论的对偶平衡方程和相应的边界条件.  相似文献   

20.
The torsional static and dynamic behaviors of circular nanosolids such as nanoshafts, nanorods and nanotubes are established based on a new nonlocal elastic stress field theory. Based on a new expression for strain energy with a nonlocal nanoscale parameter, new higher-order governing equations and the corresponding boundary conditions are first derived here via the variational principle because the classical equilibrium conditions and/or equations of motion can- not be directly applied to nonlocal nanostructures even if the stress and moment quantities are replaced by the corresponding nonlocal quantities. The static twist and torsional vibration of circular, nonlocal nanosolids are solved and discussed in detail. A comparison of the conventional and new nonlocal models is also presented for a fully fixed nanosolid, where a lower-order governing equation and reduced stiffness are found in the conventional model while the new model reports opposite solutions. Analytical solutions and numerical examples based on the new nonlocal stress theory demonstrate that nonlocal stress enhances stiffness of nanosolids, i.e. the angular displacement decreases with the increasing nonlocal nanoscale while the natural frequency increases with the increasing nonlocal nanoscale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号