首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
The partial substitution of CaF2 for CaO in the Na2O–CaO–SiO2–P2O5 system was conducted by the sol–gel method and a comparison of the glass–ceramic properties was reported. Based on thermogravimetric and differential thermal analysis, the gels were sintered with a suitable heat treatment procedure. The glass–ceramic properties were characterized by X-ray diffraction, fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectrometer and so on, and the bioactivity of the glass–ceramic was evaluated by in vitro assays in simulated body fluid. Results indicate that with the partial substitution of CaF2 for CaO in glass composition, the volume density, apparent porosity, bending strength and microhardness of the glass–ceramics have been significantly improved. Furthermore, CaF2 promotes glass crystallization which does not inhibit the glass–ceramic bioactivity.  相似文献   

2.
The purpose of the present study was to investigate the influence of end-temperature over the structural properties, chemical composition and bioactivity of dental porcelain modified by bioactive glass. In particular, sol–gel derived specimens of bioactive glass dental porcelain underwent firing at two increased end-temperatures. All specimens were characterized using Scanning Electron Microscopy, Fourier Transform Infrared and Raman Spectroscopy, X-ray diffraction and N2-porosimetry. In vitro bioactivity test was performed too. SEM analysis of both specimens revealed smooth morphology of particles, which were sintered together. Spherical and closed porei were evident. N2- adsorption isotherms of specimens represented non nano-/meso-porous materials. FTIR and Raman spectroscopy revealed the predominance of b-wollastonite as well as the appearance of a-cristobalite. XRD confirmed the results. In vitro tests evidenced the bioactivity of the specimens regardless of temperature. However, the increased temperature caused delayed apatite precipitation. In conclusion, increased temperature favored the sintering process initiation, along with the surface crystallization, which in turn delayed bioactivity.  相似文献   

3.
Luminescent europium-containing bioactive glasses (EuBG) based on the 58 %SiO2–33 %CaO–9 %P2O5 (in mass, %) system were synthesized using sol–gel technique by adding Eu2O3 in silica network. The structural, textural and optical properties, as well as in vitro bioactivity and biocompatibility of the material were characterized using various methods. The results show that all the Eu-containing bioactive glass materials exhibit an amorphous structure, large specific surface area, relatively uniform pore size distribution and high in vitro bioactivity, similar to the conventional sol–gel bioactive glass. More importantly, the addition of Eu2O3 endow the material with a luminescent property even after immersion in aqueous solution and the luminescent intensity increases with the increase of Eu2O3 content. The cytotoxicity assay indicates that pure EuBG extract significantly inhibit the growth of rat marrow mesenchymal stem cells (rMSCs), while 25 % concentration of the extract diluted by culture medium could significantly improve the proliferation of rMSCs in comparison with pure medium. According to the above results, the material presents excellent apatite-forming activity, luminescent property and biocompatibility, demonstrating their potential applications in the fields of bone regeneration and drug delivery system.  相似文献   

4.
Two glasses of the CaO-MgO-P2O5-SiO2 system with different MgO contents (0 and 10 mol%, respectively) have been synthesized by sol–gel method. The degradation of glass samples was evaluated through the weight loss in the tris-(hydroxymethyl)-aminomethane and hydrochloric acid (Tris–HCl) buffer solution, and the in vitro bioactivity was assessed by determining the changes in surface morphology and composition after soaking in a simulated body fluid. Formation of the apatite-like layer on glasses surface was studied by means of X-ray diffraction, Fourier-transform infrared, scanning electron microscopy. Results indicate that, with the partial substitution of MgO for CaO in glass composition, the glass degradation decrease and the formation of apatite-like layer is delayed. Furthermore, it is observed that the glass bioactivity is relative to its dissolution, and the effects of MgO on glass degradability and bioactivity may be attributed to the influence of ionic field strength and distinct bonding configuration of glass.  相似文献   

5.
Summary: The aim of this work was to obtain pseudowollastonite-based ceramics and to determine its bioactive features. The materials were obtained by new method, namely thermal treatment of ceramic active fillers-containing polysiloxane polymeric precursor. As active fillers, commercially available Ca(OH)2 and silica nanopowders (SiO2) were used. The phase composition of ceramic products were analysed by the means of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis (XRD). The microstructure of ceramic products were studied by scanning electron microscopy (SEM) with EDS point analysis. The bioactivity was determined in “in vitro” conditions, by immersing of ceramic samples in simulated body fluid (SBF). The results presented in this work indicate that heat treatment of active fillers-containing polysiloxane precursor is an alternative method for receiving of pseudowollastonite-containing materials. Such obtained samples demonstrate bioactivity in “in vitro” conditions.  相似文献   

6.
In the present report, a bioactive glass was synthesized from silica sand as economic substitute to alkoxy silane reagents. Sodium metasilicate (Na2SiO3) obtained from the sand was hydrolyzed and gelled using appropriate reagents before sintering at 950 °C for 3 h to produce glass in the system SiO2? Na2O? CaO? P2O5. Compression test was conducted to investigate the mechanical strength of the glass, while immersion studies in simulated body fluid (SBF) was used to evaluate reactivity, bioactivity and degradability. Furthermore, the glass samples were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and energy dispersive X‐ray spectroscopy (EDX) to evaluate the microstructure and confirm apatite formation on the glass surface. The glass, dominated by bioactive sodium calcium silicate, Na2Ca2Si3O9 (combeite) crystals, had mechanical strength of 0.37 MPa and showed potentials for application as scaffold in bone repair.  相似文献   

7.
Crystallization of BaO–SrO–TiO2SiO2–Al2O3-based glass ceramics, prepared by sol–gel process, was evaluated in terms of the effect of sintering temperature on phase evolution and electrical properties. The characterization of the samples was performed by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) studies and impedance spectroscopy analysis. The XRD results demonstrate that fresnoite phase starts to crystallize at 700 °C and perovskite phase appears at 900 °C. The glass ceramic samples sintered at high temperatures contained three crystalline phases, including perovskite, feldspar and fresnoite. In addition, SEM observation showed that the average grain size increased and the porosity decreased with increasing sintering temperature. Furthermore, the measurement of impedance spectroscopy suggests that there is a minimum value of the activation energy associated with the sintering temperature of the glass ceramics. The possible explanation of the sintering temperature dependence was discussed.  相似文献   

8.
Correlations between the structural properties of Na2O-CaO-SiO2 glasses characterized by the activity of oxygen ions and the bioactivity were examined by comparing the compositional dependence of the structural parameters calculated on the basis of a thermodynamic consideration with that of the bioactivity. A simple model of characterizing the glass structure by considering the bridging and non-bridging oxygen ions was employed as the first step for this purpose. Further detailed thermodynamic analysis on the anionic constitution in the glass was performed and the compositional dependences of the relative proportions of bridging, non-bridging and free oxygen ions were calculated. The bioactive region corresponded to the compositional region characterized by the higher relative proportion of non-bridging oxygen ions with co-existing an appreciable concentration of bridging oxygen ions, suggesting a possible important role of the non-bridging oxygen ions on the surface chemical process of bone-like apatite layer formation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The effects on the thermal properties and bioactivity of the substitution of CaO by La2O3, Y2O3 and Al2O3 in a glass of composition CaO·SiO2 were studied and compared. The trivalent metal oxides were all effective in raising the glass transformation and softening temperatures when they replaced CaO in the glass of composition CaO·SiO2. The experimental results suggest that Al2O3 plays the role of a glass-former, while La2O3 and Y2O3 behave as glass-modifiers. The tendency to devitrify appears to be the lower, the farther the glass composition is from those of the crystalline phases, owing to the need for diffusion over longer distances, the greater the composition difference. The substitution with the trivalent metal oxides is detrimental to the bioactivity, which is preserved only in the event of very small degrees of substitution. The most negative role appears to be played by Al2O3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Melek Erol 《Chemical Papers》2010,64(4):482-490
In this study, bioactivity of glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2 was investigated. For this purpose, a glass sample was prepared by the traditional melting method. Crystallization behavior of bioactive glass was also investigated using differential thermal analyses. The Avrami constant of bioactive glass sample calculated according to the Ozawa equation was 3.72 ± 0.4, which indicates bulk crystallization. Using the Matusita-Sakka and the Kissinger equations, activation energy of crystal growth was determined as (394 ± 17) kJ mol−1 and (373 ± 12) kJ mol−1, respectively. These results indicate that the crystallization activation energy data of bioactive glass obtained in this study are accurate and reliable. Bioactivity of the resultant glass sample was analyzed by immersion in simulated body fluid. Scanning electron microscopy, thin film X-ray diffraction, ultraviolet spectroscopy and inductively coupled plasma techniques were used to monitor changes in the glass surface and the simulated body fluid composition. The results revealed that a hydroxyapatite layer was formed on the glass surface after 21 days of immersion in SBF. Formation of the hydroxyapatite layer confirmed the bioactivity of the glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2. In addition, physical and mechanical properties of the sample were measured to determine changes in the properties with the immersion time. The results show that bioactive glass maintained its strength during the immersion in a simulated body fluid solution.  相似文献   

11.
The aim of this work has been the preparation and evaluation of sol-gel coatings for clinical applications. Research was focussed in the development of highly corrosion resistant and/or bioactive sol-gel coatings onto AISI 316L stainless steel. Hybrid SiO2 sol-gel coatings inhibited corrosion and Fe diffusion, although no signal of bioactivity was detected. The inclusion of Ca- and P-alcoxides in the sol composition did not promote bioactivity. Bioactive coatings were obtained from suspensions prepared by adding glass (CaO·SiO2·P2O5) particles to an hybrid organic-inorganic SiO2 sol. The dissolution of glass particles promoted in vitro induction of apatite along with a slight reduction in the corrosion resistance of coated pieces. By combining an inner SiO2 hybrid film acting as barrier against corrosion with an outer coating containing bioactive glass particles, a significant improvement in the electrochemical behaviour was observed. This double-layered coating showed in vitro signals of bioactivity, and preliminary in vivo tests gave promising results.  相似文献   

12.
采用固相反应制备不同CaF掺量的生物活性硅酸三钙(3CaO·SiO22,C3S),并研究CaF2对C3S的制备及生物活性的影响.化学滴定、TGA/DTA、XRD、SEM和FTIR的分析结果表明,在煅烧过程中,CaF2有效的促进CaCO3的分解,并能形成低共熔化合物,促进C3S的形成;存急冷过程中,CaF2抑制CS晶型转变和分解,CaF2有效提高固相反应制备C§的纯度;模拟体液(SBD浸泡实验结果表明掺与小掺CaF2的C3s表面分别在1 d和3 d内诱导形成诱导磷厌石,这表明掺CaF2可以提高C3S的生物活性.  相似文献   

13.
The structures of binary xCaO · (100 ? x)SiO2 glasses with x = 10, 20 and 30 mol-% and ternary (20 ? x)CaO · xP2O5 · 80SiO2 glasses with x = 3, 10, 15, 17 and 20 mol-% have been studied by means of classical molecular dynamics simulations using both the melt-quenched and the sol–gel protocols. The structural picture derived correlates the bioactive behaviour to the combined effects of the connectivity of the extended silicate network and to the tendency to form (or not to form) non-homogeneous domains. In this context, a mathematical relationship that relates the Ca/P ratio in the Ca phosphate micro-segregation zones to the P2O5 content in ternary glasses has been developed and this has been used to fine-tuning the optimum amount of P in a glass for its highest in vitro bioactivity. The composition with optimal Ca/P ratio, 80Si–14.8Ca–5.2P, has been synthesized and the results of bioactivity tests have confirmed the prediction.  相似文献   

14.
The preparation and characterization of the M′–Mo–O nitrate–tartrate (M′ = Mg, Ca, Sr, and Ba) gels, which were produced by the simple aqueous sol–gel method and calcined at 500, 600, 700, 800, 900, and 1,000 °C temperatures are reported. The crystalline alkaline earth metal molybdates (MgMoO4, CaMoO4, SrMoO4, and BaMoO4) and as-prepared M′–Mo–O nitrate–tartrate gels investigated by thermal analysis (TG/DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM). TG/DSC analysis showed the possible decomposition mechanism of synthesized gels. XRD studies allowed the identification of main types of crystalline structures in the MgMoO4, CaMoO4, SrMoO4, and BaMoO4 systems. Moreover, SEM analysis revealed the changes of surface morphology of the final compounds depending on annealing temperatures.  相似文献   

15.
Composite scaffolds are commonly used strategies and materials employed to achieve similar analogs of bone tissue. This study aims to fabricate 10% wt polylactic acid (PLA) composite fiber scaffolds by the air-jet spinning technique (AJS) doped with 0.5 or 0.1 g of zirconium oxide nanoparticles (ZrO2) for guide bone tissue engineering. ZrO2 nanoparticles were obtained by the hydrothermal method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM and fourier-transform infrared spectroscopy (FTIR) analyzed the synthesized PLA/ZrO2 fiber scaffolds. The in vitro biocompatibility and bioactivity of the PLA/ZrO2 were studied using human fetal osteoblast cells. Our results showed that the hydrothermal technique allowed ZrO2 nanoparticles to be obtained. SEM analysis showed that PLA/ZrO2 composite has a fiber diameter of 395 nm, and the FITR spectra confirmed that the scaffolds’ chemical characteristics are not affected by the synthesized technique. In vitro studies demonstrated that PLA/ZrO2 scaffolds increased cell adhesion, cellular proliferation, and biomineralization of osteoblasts. In conclusion, the PLA/ZrO2 scaffolds are bioactive, improve osteoblasts behavior, and can be used in tissue bone engineering applications.  相似文献   

16.
In this study, monophasic strontium and barium stannate (SrSnO3, Sr2SnO4, BaSnO3, Ba2SnO4) powders were synthesized by means of environmentally friendly aqueous sol–gel technique under neutral conditions. However, it was established that the successful sol–gel synthesis of appropriate calcium stannates (CaSnO3 and Ca2SnO4) can be performed only at acidic sol–gel processing conditions. Moreover, the influence of nature of alkaline earth metal source on the phase purity of different metal stannates was evaluated. The thermal behaviour of Ca–Sn–O, Sr–Sn–O and Ba–Sn–O precursor gels was investigated by TG-DSC measurements. The phase purity, crystallization peculiarities and microstructural evolution of the sol–gel derived alkaline earth metal stannate powders were studied by XRD and SEM measurements.  相似文献   

17.
A micro-LIBS system was set up based on a quadruple Nd:YAG laser at 266 nm coupled with a microscope. Elemental mapping was performed on a Mo-rich glass–ceramic sample containing CaMoO4 crystallites hundreds of microns in length and about 25 μm in section diameter. The topography of single-shot laser-induced craters was characterized using an atomic force microscope (AFM), which revealed a crater size less than 7 μm. Mappings of Mo, Ca, Sr, Al, Fe, Zr and rare earth elements such as Eu, Nd, Pr and La were undertaken. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was conducted to validate the micro-LIBS analysis. Principal components analysis calculation was used to investigate the correlation of elements in the two phases of glass–ceramic. Correlation between Ca, Sr, rare earth elements and Mo indicates their preferential incorporation into the calcium molybdate crystalline phase. Anti-correlation between Fe, Zr, Al and Mo revealed their affinity to the glass phase.  相似文献   

18.
A novel procedure to synthesize poly(2-Hydroxyethylmethacrylate)-silica blend hybrids is presented. Methacrylate monomers bearing an alkoxysilyl unit, prepared by Michael addition of 2-Hydroxyethylmethacrylate (HEMA) to 3-Aminopropyltriethoxysilane (APTS), were employed. By 13C NMR and mass analysis it was possible to establish the formation of coupling hybrid species. A hybrid material, with final concentration of 30% w/w of silica gel to the mass of polymer, was obtained through basic catalysed sol–gel process of tetraethoxysilane (TEOS) and the alkoxysilyl unit of the hybrid monomer, followed by in situ free-radical polymerization. Optical transparency and higher glass transition temperature than pHEMA suggest an increase in either density or strong interphase interactions. Moreover, pHEMA/SiO2 gel blend hybrid exhibits better thermal stability than the as-prepared polymer. Morphology and structure were studied through scanning electron microscopy (SEM), transmission electron spectroscopy (TEM), and dynamic light scattering (DLS). The structure of the hybrid consisted of nanosilica, 10 nm in mean diameter, uniformly dispersed in the pHEMA phase with strong interactions between the phases. Nevertheless, the swelling ratio of the hybrid was comparable to pHEMA. Using FT-IR spectroscopy, SEM and energy dispersive system (EDS), XRD analysis in vitro bioactivity of the hybrid, due to the inorganic phase, was ascertained therefore, the obtained hybrid can be used to make bioactive scaffold for bone engineering.  相似文献   

19.
Titanium dioxide (TiO2) powders were synthesized by the hydrothermal method. The TiO2 powders were composed of nanorods with dimensions of 10–18 nm and 60–180 nm in diameter and length, respectively. The in vitro bioactivity of the TiO2 powders was examined by evaluation of hydroxyapatite (HAp) formation ability in simulated body fluid (SBF). The results showed that TiO2 nanorods induced the formation of nanocrystalline HAp after soaking in SBF after 1 day rapidly. Our study indicates that TiO2 nanorods are bioactive and might be used for preparation of new biomaterials.  相似文献   

20.
Surface modified adsorbent mesoporous silicate MCM-41 has been prepared by grafting thiol containing functional group onto mesoporous silicate MCM-41. XRD, N2 adsorption/desorption measurements, SEM, FT-IR, thermogravimetry and elemental analysis have been made to confirm the ordered mesoporous framework and the functionalization of the thiol groups. Sorption of 18 metal ions on this sorbent have been studied and discussed. Chromatographic separation of Rb(I)–U(VI)–Sr(II)–Zr(IV), has been achieved on column of this sorbent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号