共查询到17条相似文献,搜索用时 83 毫秒
1.
2.
分别从理论和实验上分析了光纤表面倏逝场强度的分布(z=10 nm, 100 nm, 500 nm,1 000 nm),研究了微米级光纤光镊对微球的操纵。实验中把直径为125 m的普通单模光纤拉制成锥腰直径为2 m的锥形光纤。当光纤通光时,在光纤锥区倏逝场的作用下,直径3 m的聚苯乙烯微球保持平衡状态,并且光纤附近的微球被吸引到光纤表面,以5.3 m /s的速度沿着光束的传播方向运动。这个实验不仅实现了对微球的成功捕获,而且验证了光纤光镊的力学作用。光纤光镊对微球的无接触、无损伤操纵,将在生物传感领域有潜在的应用。 相似文献
3.
4.
纳变尺度的光学成像与纳米光谱:近场光学与近场光学显微镜的进展 总被引:6,自引:0,他引:6
近场光学是指当光探测器及探测器一样品间距均小于辐射波长条件下的光学现象,利用近场光学扫描显微镜和近场光谱仪,不但能够以突破衍射极限的超高分辨率在纳米尺度实现光学成像,而且还可获得纳米微区的光谱信息,文章介绍近场光学的原理及其在凝聚态物理领域中的应用与进展,并给出了我们的初步结果。 相似文献
5.
6.
近场光学虚拟光探针的数值分析 总被引:1,自引:4,他引:1
虚拟光探针是基于近场光学隐失场干涉原理产生的一种非实体探针,可以应用于近场光学超高密度存储、纳米光刻、近场光学成像、光谱探测、纳米样品的近场光学操作等领域。本研究采用三维时间域有限差分(FDTD)方法对近场光学虚拟光探针的光场分布特性进行了数值模拟计算和比较,分析了孔的形状、大小及偏振态等因素对虚拟光探针光场分布的影响,研究结果表明虚拟光探针的通光效率较普通的纳米孔径光纤探针提高10^2-10^4倍;其光场分布的中间峰的半峰全宽(即虚拟光探针的尺寸)在一定距离范围内基本保持不变,从而可以解决近场光学系统中纳米间距控制的难题,避免光学头与介质的磁撞。优化虚拟光探针的设计参量能有效的抑制虚拟光探针中的旁瓣。文章还给出了应用虚拟探针实现高密度光存储的原理方案。 相似文献
7.
8.
9.
10.
11.
12.
Systematical study of the trapping forces of optical tweezers formed by different types of optical ring beams 总被引:2,自引:0,他引:2 下载免费PDF全文
The technique of optical tweezers has been improved a lot since its
invention, which extends the application fields of optical tweezers. Besides
the conventionally used Gaussian beams, different types of ring beams have also been
used to form optical tweezers for different purposes. The two typical
kinds of ring beams used in optical tweezers are the hollow Gaussian beam and
Laguerre--Gaussian (LG) beam. Both theoretical computation and experiments
have shown that the axial trapping force is improved for the ring beams
compared with the Gaussian beam, and hence the trapping stability is
improved, although the transverse trapping forces of ring beams are smaller
than that of Gaussian beam. However, no systematic study on the trapping
forces of ring beam has ever been discussed. In this article, we will investigate
the axial and transverse trapping forces of different types of ring beams
with different parameters systematically, by numerical computation in which
the ray optics model is adopted. The spherical aberration caused by the
refractive index mismatch between oil and water is also considered in the
article. The trapping forces for different objectives that obey the sine
condition and tangent condition are also compared with each other.
The result of systematical calculation will be useful for the applications
of optical tweezers formed by different types of ring beams. 相似文献
13.
14.
本文采用三维时域有限差分法(FDTD)和Maxwell应力张量法建立了单光镊在焦点附近俘获球形微粒的光阱力模型,采用基于球矢量波函数(VSWF)的五阶高斯光源作为仿真光源,得到了准确的光场传播.讨论了光源的波长、束腰、偏振态和微球的半径、折射率对光阱力的影响,分析了在单光镊俘获微球时,邻近微球对光阱力的影响.特别研究了光源的偏振态对微球所受光阱力的作用效果,仿真结果表明圆偏振光比线偏振光对微球的俘获力更大;被光镊稳定俘获的微球,会受到邻近微球干扰,失去平衡状态,改变光源的偏振态可以改变微球的受力状态.
关键词:
光镊
光阱力
介质微球
时域有限差分法(FDTD) 相似文献
15.
Optical tweezers have been successfully used in the study of colloid science. In most applications people are concerned with the behaviour of a single particle held in the optical tweezers. Recently, the ability of the optical tweezers to simultaneously hold two particles has been used to determine the stability ratio of colloidal dispersion. This new development stimulates the efforts to explore the characteristics of a two-particle system in the optical tweezers.An infinite spherical potential well has been used to estimate the collision frequency for two particles in the optical trap based on a Monte Carlo simulation. In this article, a more reasonable harmonic potential, commonly accepted for the optical tweezers, is adopted in a Monte Carlo simulation of the collision frequency. The effect of hydrodynamic interaction of particles in the trap is also considered. The simulation results based on this improved model show quantitatively that the collision frequency drops down sharply at first and then decreases slowly as the distance between the two particles increases. The simulation also shows how the collision frequency is related to the stiffness of the optical tweezers. 相似文献
16.
Optical tweezers have been a valuable research tool since their invention in the 1980s. One of the most important developments in optical tweezers in recent years is the creation of two-dimensional arrays of optical traps. In this paper, a method based on interference is discussed to form gradient laser fields, which may cause the spatial modulation of particle concentration. The parameters related to the optical tweezers array are discussed in detail and simulated by the Matlab software to show the influence of important parameters on the distribution of particle concentration. The spatial redistribution of particles in a laser interference field can also be predicted according to the theoretical analysis. 相似文献
17.
We report on a method for rotating single mammalian cells about an axis perpendicular to the optical system axis through the imaging plane using dynamic holographic optical tweezers (HOTs). Two optical traps are created on the opposite edges of a mammalian cell and are continuously transitioned through the imaging plane along the circumference of the cell in opposite directions, thus providing the torque to rotate the cell in a controlled fashion. The method enables a complete 360° rotation of live single mammalian cells with spherical or near-to spherical shape in 3D space, and represents a useful tool suitable for the single cell analysis field, including tomographic imaging. 相似文献