首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A new phase has been prepared by methanolothermal reaction of Cs2CO3, BiCl3 and Li3AsSe3 at 130 °C for 36 hours. Cs4BiAs3Se7 ( I ) reveals the first Bi‐selenoarsenate polyanionic chain [Bi(As2Se4)(AsSe3)]4–, consisting of Bi3+ ions in a distorted octahedral environment of [AsSe3]3– and trans‐[As2Se4]4– units. The latter anion consists of a central “As24+” dumb‐bell whereby two Se atoms are attached to each of the As atoms. Structural Data: Space Group P21/n, a = 13.404(4) Å, b = 23.745(8) Å, c = 13.880(4) Å, β = 99.324(6)°, Z = 8.  相似文献   

2.
Novel Routes to the Synthesis of Thiohalogeno- and Cyclothioarsenates(III). Crystal Structures of PPh4[As2SBr6] · CH3CN and PPh4[SAsS5] By reactions of (PPh4)2[As2Cl8] and (PPh4)2[As2Br8] with Na2S4 in acetonitrile (PPh4)2[As2SCl6] · CH3CN and (PPh4)2[As2SBr6] · CH3CN were obtained, respectively. Using K2S5, PPh4[As2SCl5] and PPh4[SAsS5] were the products. The latter can also be obtained from PPh4[As2SCl5] and Na2S4, while PPh4[As3S3Br4] is formed from PPh4[As2SBr5] with K2S5. Two X-ray crystal structure determinations were performed. PPh4[As2SBr6] · CH3CN: triclinic, P1 , Z = 2, a = 1200.4(7), b = 1507.3(6), c = 1594.4(8) pm, α = 81.59(2), β = 78.22(3), γ = 80.58(2)°, R = 0.096 for 2298 observed reflexions. The structure contains [As2SBr6]2? -ions in which the two Sb atoms are joined via one S and two Br atoms. PPh4[SAsS5]: triclinic, P1 , Z = 2, a = 1133.9(4), b = 1142.5(4), c = 1186.9(5) pm, α = 102.77(4), β = 107.74(3), γ = 106.65(3)°, R = 0.043 für 2677 reflexions. In the [SAsS5]? -ion an AsS5 ring in the chair conformation is present.  相似文献   

3.
On the Oxidative Addition of 1-Halogenalk-1-ynes – Synthesis and Structure of Phenylalkynylpalladium Complexes [Pd(PPh3)4] ( 2 ) reacts with IC≡CPh and ClC≡CPh in the sense of an oxidative addition to give trans-[Pd(C≡CPh)X(PPh3)2] (X = I: 3 a , X = Cl: 3 b ). As side products trans-[PdX2(PPh3)2] (X = I: 4 a , X = Cl: 4 b ; < 10%) and PhC≡C–C≡CPh ( 5 ; X = I: ca 30%, X = Cl: < 4%) are formed. 3 a and 3 b were characterized by NMR (1H, 13C, 31P) and IR spectroscopies as well as by X-ray single-crystal structure analyses. In the crystals of 3 a and 3 b isolated molecules were found. The Pd–C≡C–Ph unit is linear in 3 a and approximately linear in 3 b [Pd–C≡C 174.2(6)°, C≡C–C 179,0(7)°].  相似文献   

4.
The Chlorooxoarsenates(III) (PPh4)2[As4O2Cl10] · 2 CH3CN and (PPh4)2[As2OCl6] · 3 CH3CN (PPh4)2[As2Cl8] can be prepared from As2O3, SOCl2 and PPh4Cl in acetonitrile. Its oxidation with chlorine yields PPh4[AsCl6]. This was also obtained directly from arsenic, chlorine and PPh4Cl, (PPh4)2[As4O2Cl10] · 2 CH3CN being a side product; the latter was obtained with high yield from AsCl3, As2O3 and PPh4Cl in acetonitrile. By addition of PPh4Cl it was converted to (PPh4)2[As2OCl6] · 3 CH3CN. According to their X-ray crystal structure analyses, both crystallize in the triclinic space group P 1. The [As4O2Cl10]2– ion can be regarded as a centrosymmetric association product of two Cl2AsOAsCl2 molecules and two Cl ions, each Cl ion being coordinated with all four As atoms. In the [As2OCl6]2– ion the As atoms are linked via the O atom and two Cl atoms.  相似文献   

5.
Crystals of the novel title arsenic(III) phthalocyanine complex, [As(C32H16N8)]2[As4I14] or [(AsPc)+]2·[As4I14]2−, where Pc is phthalocyaninate(2−), have been obtained by the reaction of pure powdered As with phthalo­nitrile under a stream of iodine vapour at 493 K. The crystals are built up of separate but interacting [AsPc]+ cations and [As4I12]2− anions. The As atom of the [AsPc]+ unit is bonded to the four iso­indole N atoms of the Pc macrocycle and lies 0.743 (2) Å out of the plane defined by these four N atoms. The anionic part of the complex consists of AsI3 and [AsI4] units joined together into an [As4I14]2− anion. The arrangement of the oppositely charged moieties, [AsPc]+ and [As4I14]2−, in the crystal is determined mainly by ionic attraction and by donor–acceptor interactions between the [AsPc]+ and [As4I14]2− ions.  相似文献   

6.
CuYS2: A Ternary Copper(I) Yttrium(III) Sulfide with Chains {[Cu(S1)3/3(S2)1/1]3–} of cis ‐Edge Connected [CuS4]7– Tetrahedra Pale yellow, lath‐shaped single crystals of the ternary copper(I) yttrium(III) sulfide CuYS2 are obtained by the oxidation of equimolar mixtures of the metals (copper and yttrium) with sulfur in the molar ratio 1 : 1 : 2 within fourteen days at 900 °C in evacuated silica ampoules, while the presence of CsCl as fluxing agent promotes their growth. The crystal structure of CuYS2 (orthorhombic, Pnma; a = 1345.3(1), b = 398.12(4), c = 629.08(6) pm, Z = 4) exhibits chains of cis‐edge linked [CuS4]7– tetrahedra with the composition {[Cu(S1)3/3(S2)1/1]3–} running along [010] which are hexagonally bundled as closest rod packing. Charge equalization and three‐dimensional interconnection of these anionic chains occur via octahedrally coordinated Y3+ cations. These are forming together with the S2– anions a network [Y(S1)3/3(S2)3/3] of vertex‐ and edge‐shared [YS6]9– octahedra with ramsdellite topology. The metall‐sulfur distances of the [CuS4]7– tetrahedra (230 (Cu–S2), 232 (Cu–S1), and 253 pm (Cu–S1′, 2 × )) cover a very broad interval, whilst these (Y–S: 267–280 pm) within the [YS6]9– octahedra range rather closely together.  相似文献   

7.
The synthesis and spectroscopic characterisation of the new diborane(4) compounds B2(1,2-O2C6Cl4)2 and B2(1,2-O2C6Br4)2 are reported together with the diborane(4) bis-amine adduct [B2(calix)(NHMe2)2] (calix=Butcalix[4]arene). B–B bond oxidative addition reactions between the platinum(0) compound [Pt(PPh3)2(η-C2H4)] and the diborane(4) compounds B2(1,2-S2C6H4)2, B2(1,2-O2C6Cl4)2 and B2(1,2-O2C6Br4)2 are also described which result in the platinum(II) bis-boryl complexes cis-[Pt(PPh3)2{B(1,2-S2C6H4)}2], cis-[Pt(PPh3)2{B(1,2-O2C6Cl4)}2] and cis-[Pt(PPh3)2{B(1,2-O2C6Br4)}2] respectively, the former two having been characterised by X-ray crystallography. In addition, the platinum complex [Pt(PPh3)2(η-C2H4)] reacts with XB(1,2-O2C6H4) (X=Cl, Br) affording the mono-boryl complexes trans-[PtX(PPh3)2{B(1,2-O2C6H4)}] as a result of oxidative addition of the B–X bonds to the Pt(0) centre; the chloro derivative has been characterised by X-ray crystallography.  相似文献   

8.
Reactions of the oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (LPh) under mild conditions and in the presence of MeOH or water give [ReOX2(Y)(PPh3)(LPh)] complexes (X = Cl, Br; Y = OMe, OH). Attempted reactions of the carbene precursor 5‐methoxy‐1,3,4‐triphenyl‐4,5‐dihydro‐1H‐1,2,4‐triazole ( 1 ) with [ReOCl3(PPh3)2] or [NBu4][ReOCl4] in boiling xylene resulted in protonation of the intermediately formed carbene and decomposition products such as [HLPh][ReOCl4(OPPh3)], [HLPh][ReOCl4(OH2)] or [HLPh][ReO4] were isolated. The neutral [ReOX2(Y)(PPh3)(HLPh)] complexes are purple, airstable solids. The bulky NHC ligands coordinate monodentate and in cis‐position to PPh3. The relatively long Re–C bond lengths of approximate 2.1Å indicate metal‐carbon single bonds.  相似文献   

9.
Reactions of CpRuCl(PPh3)2 with bis(phosphino)amines, X2PN(R)PX2 (1 R=H, X=Ph; 2 R=X=Ph; 3 R=Ph, X2=O2C6H4) give neutral or cationic mononuclear complexes depending on the reaction conditions. Reaction of 1 with CpRuCl(PPh3)2 gives one neutral complex, [CpRu(Cl)(η2-Ph2PN(H)PPh2)] (4) and two cationic complexes, [CpRu(η2-Ph2PN(H)PPh2)(η1-Ph2PN(H)PPh2)]Cl (5) and [CpRu(PPh3)(η2-Ph2PN(H)PPh2)]Cl (6), whereas the reaction of 2 with CpRuCl(PPh3)2 leads only to the isolation of cationic complex, [CpRu(PPh3)(η2-Ph2PN(Ph)PPh2)]Cl (7). The catechol derivative 3, in a similar reaction, affords an interesting mononuclear complex [CpRu(PPh3){η1-(C6H4O2)PN(Ph)P(O2H4C6)}2]Cl (8) containing two monodentate bis(phosphino)amine ligands. The structural elucidation of the complexes was carried out by elemental analyses, IR and NMR spectroscopic data.  相似文献   

10.
Building upon previous studies on the synthesis of bis(sigma)borate and agostic complexes of ruthenium, the chemistry of nido‐[(Cp*Ru)2B3H9] ( 1 ) with other ligand systems was explored. In this regard, mild thermolysis of nido‐ 1 with 2‐mercaptobenzothiazole (2‐mbzt), 2‐mercaptobenzoxazole (2‐mbzo) and 2‐mercaptobenzimidazole (2‐mbzi) ligands were performed which led to the isolation of bis(sigma)borate complexes [Cp*RuBH3L] ( 2 a – c ) and β‐agostic complexes [Cp*RuBH2L2] ( 3 a – c ; 2 a , 3 a : L=C7H4NS2; 2 b , 3 b : L=C7H4NSO; 2 c , 3 c : L=C7H5N2S). Further, the chemistry of these novel complexes towards various diphosphine ligands was investigated. Room temperature treatment of 3 a with [PPh2(CH2)nPPh2] (n=1–3) yielded [Cp*Ru(PPh2(CH2)nPPh2)‐BH2(L2)] ( 4 a – c ; 4 a : n=1; 4 b : n=2; 4 c : n=3; L=C7H4NS2). Mild thermolysis of 2 a with [PPh2(CH2)nPPh2] (n=1–3) led to the isolation of [Cp*Ru(PPh2(CH2)nPPh2)(L)] (L=C7H4NS2 5 a – c ; 5 a : n=1; 5 b : n=2; 5 c : n=3). Treatment of 4 a with terminal alkynes causes a hydroboration reaction to generate vinylborane complexes [Cp*Ru(R?C?CH2)BH(L2)] ( 6 and 7 ; 6 : R=Ph; 7 : R=COOCH3; L=C7H4NS2). Complexes 6 and 7 can also be viewed as η‐alkene complexes of ruthenium that feature a dative bond to the ruthenium centre from the vinylinic double bond. In addition, DFT computations were performed to shed light on the bonding and electronic structures of the new compounds.  相似文献   

11.
Coordination Chemistry of P-rich Phosphanes and Silylphosphanes. XV. Influence of the Chelate Compounds dppe and dppp on Formation and Properties of the Pt Complexes of tBu2P–P The chelating ligands dppe and dppp replace the PPh3 groups in [η2-{tBu2P–P}Pt(PPh3)2] 1 yielding [η2-{tBu2P–P}Pt(dppe)] 2 and [η2-{tBu2P–P}Pt(dppp)] 8 . However, they don't replace the phosphinophosphinidene ligand tBu2P–P. dppm does not react at all with 1 . [η2-{H2C=CH2}Pt(dppe)] 3 yields in the presence of tBu2P–P=P(Me)tBu2 4 exclusively Pt(dppe)2 5 and elemental Pt; no 2 could be detected. Similarly, [η2-{H2C=CH2}Pt(dppp)] 7 reacts with 4 to give mainly Pt(dppp)2 9 and Pt; [η2-{tBu2PP}Pt(PPh3)2] 8 is present only as a minor product. [η2-{tBu2P–P}Pt(dppe)] 2 crystallizes in the monoclinic space group P21/c (no. 14) with a = 1834.40(10) pm, b = 1679.70(10) pm, c = 1125.79(6) pm, β = 103.963(5)°.  相似文献   

12.
Pentabromothio-diarsenate and -diantimonate: Preparation, Vibrational Spectra, and Crystal Structures of PPh4[As2SBr5] and PPh4[Sb2SBr5] The title compounds were obtained in CH2Br2 from PPh4Br, HBr and As2S3 or Sb2S3, respectively. Their i.r. and Raman spectra are reported. Their crystal structures were determined by X-ray diffraction. Crystal data: PPh4[As2SBr5], monoclinic, space group P21/n, Z = 4, a = 1192.3, b = 1528.1, c = 1618.0 pm, β = 95.53°, isotypic with PPh4[As2SCl5] (structure determination with 1539 observed reflexions, R = 0.052); PPh4[Sb2SBr5], triclinic, space group P1 , Z = 2, a = 1044,8, b = 1207.1, c = 1307.8 pm, α = 104.77, β = 108.63, γ = 98.34° (2398 observed reflexions, R = 0.032). Both ions, [As2SBr5]? and [Sb2SBr5]?, have the same general structure: including the lone electron pairs, the As and Sb atoms have distorted trigonal-bipyrimidal coordination, two bipyramids sharing a common edge with sulfur and bromine as bridging atoms. The [As2SBr5]? ions are associated to chains via As…Br contacts, the [Sb2SBr5]? ions form pseudodimeric units by Sb…S and Sb…Br contacts. Whereas the crystal packing of the As compound is similar to that of other PPh4+ compounds having a cation to anion ratio of 1:1, the Sb compound shows the packing principle known for 2:1 compounds.  相似文献   

13.
In a high‐yield one‐pot synthesis, the reactions of [Cp*M(η5‐P5)] (M=Fe ( 1 ), Ru ( 2 )) with I2 resulted in the selective formation of [Cp*MP6I6]+ salts ( 3 , 4 ). The products comprise unprecedented all‐cis tripodal triphosphino‐cyclotriphosphine ligands. The iodination of [Cp*Fe(η5‐As5)] ( 6 ) gave, in addition to [Fe(CH3CN)6]2+ salts of the rare [As6I8]2? (in 7 ) and [As4I14]2? (in 8 ) anions, the first di‐cationic Fe‐As triple decker complex [(Cp*Fe)2(μ,η5:5‐As5)][As6I8] ( 9 ). In contrast, the iodination of [Cp*Ru(η5‐As5)] ( 10 ) did not result in the full cleavage of the M?As bonds. Instead, a number of dinuclear complexes were obtained: [(Cp*Ru)2(μ,η5:5‐As5)][As6I8]0.5 ( 11 ) represents the first Ru‐As5 triple decker complex, thus completing the series of monocationic complexes [(CpRM)2(μ,η5:5‐E5)]+ (M=Fe, Ru; E=P, As). [(Cp*Ru)2As8I6] ( 12 ) crystallizes as a racemic mixture of both enantiomers, while [(Cp*Ru)2As4I4] ( 13 ) crystallizes as a symmetric and an asymmetric isomer and features a unique tetramer of {AsI} arsinidene units as a middle deck.  相似文献   

14.
New Coppertelluride Clusters – Syntheses, Crystal Structures, and Optical Spectra Reactions of copper(I) acetate with Te(SiMe3)2 lead in the presence of tertiary phophines PR3 (R = organic group) to the formation of new coppertelluride clusters: [Cu8Te4(PPh3)7] ( 1 ), [Cu16Te9(PPh3)8] ( 2 ), [Cu23Te13(PPh3)10] ( 3 ), [Cu44Te23(PPh3)15] ( 4 ), [Cu12Te6(PPh3)8] ( 5 ), [Cu26Te12(PEt2Ph)12] ( 6 ), [Cu16Te8(PnPr2Ph)10] ( 7 ), [Cu44Te23(PnPr2Ph)15] ( 8 ), [Cu24Te12(PiPr3)12] ( 9 ). Simple electron counting on the basis of Cu1+ and Te2– suggests that the smaller and medium size clusters 1 , 5 , 7 , and 9 are electron precise compounds and that on the other hand some of the medium size and larger ones 2 , 3 , 4 , and 8 must contain mixtures of Cu1+/Cu2+ ions or 6 Cu1+ ions and Cu0 atoms. UV‐VIS spectra in the solid state strongly confirms this suggestion by showing broad intervalence bands in the region of higher wavelengths for the cluster compounds formally being not electron precise. Apparently there is also an interesting dependence of these intervalence bands on the size of the cluster molecules.  相似文献   

15.
PPh4[As3S3Cl4] and PPh4[As3S3Br4] When As2S3 reacts with PPh4X and HX in 1,2-C2H4X2 (X = Cl, Br), the title compounds are obtained as minor products; the main products are PPh4[As2SX5]. Their crystal structures were determined by X-ray diffraction. PPh4[As3S3Cl4]: a = 1187.7, b = 1090.9, c = 1191.8 pm, α = 82.91, β = 88,93, γ = 88.52°; twins with twin plane (100); R = 0.109 for 1618 observed reflexions of one twin crystal. PPh4[As3S3Br4]: a = 1119.7, b = 1177.5, c = 1204.1 pm, α = 81.59, β = 85.88, γ = 88.25°; R = 0.061 for 2331 observed reflexions. Both compounds crystallize in the space group P1 , Z = 2, and can be considered to be isotypic. Nevertheless, PPh4[As3S3Br4] does not form twins as PPh4[As3S3Cl4]. The crystals consist of PPh4+ and [As3S3X4]? ions. In the anions, the three As atoms of an As3S3 ring in the chair conformation are commonly joined to an X atom and each As atom is bonded to one further terminal X atom. Cations and anions are packed in alternating layers.  相似文献   

16.
Thiochloroarsenates (III): Preparation, Vibrational Spectra, and Crystal Structures of PPh4[As2SCl5] and (PPh4)2[As2SCl6] · C2H4Cl2 PPh4[As2SCl5] can be obtained from As2S3 + PPh4Cl with HCl in CH2Cl2 or 1,2-C2H4Cl2. It reacts with a second mole of PPh4Cl to yield (PPh4)2[As2SCl6]. The latter also is formed by the reaction of As2S5 + 2 PPh4Cl with HCl, a second product being (PPh4)2[As2Cl8]. The i.r. and Raman spectra of the title compounds are reported. Their crystal structures were determined by X-ray diffraction. Crystal data: PPh4[As2SCl5], monoclinic, space group P21/n, a = 1175.8, b = 1508.0, c = 1593.4 pm, β = 96.22°, Z = 4; (PPh4)2[As2SCl6] · C2H4Cl2, triclinic, P1, a = 1166.3, b = 1188.2, c = 2044.6 pm, α = 95.47, β = 97.53, γ = 111.05°, Z = 2. Including the lone electron pairs, the coordination of the As atoms in the [As2SCl5] ion is distorted trigonal-bipyramidal with the S, one Cl atom, and an electron pair in equatorial positions; the two bipyramids around the two As atoms share a common edge. The As atoms in the [As2SCl6]2− ion have a distorted octahedral coordination, the two octahedra share a common face; the lone electron pairs are in the trans positions to the S atom.  相似文献   

17.
Reaction of 1, 9‐dihydro‐purine‐6‐thione (puSH2) in presence of aqueous sodium hydroxide with PdCl2(PPh3)2 suspended in ethanol formed [Pd(κ2‐N7,S‐puS)(PPh3)2] ( 1 ). Similarly, complexes [Pd(κ2‐N7,S‐puS)(κ2‐P, P‐L‐L)] ( 2 – 4 ) {L‐L = dppm (m = 1) ( 2 ), dppp (m = 3) ( 3 ), dppb (m = 4) ( 4 )} were prepared using precursors the [PdCl2(L‐L)] {L‐L = Ph2P–(CH2)m–PPh2}. Reaction of puSH2 suspended in benzene with platinic acid, H2PtCl6, in ethanol in the presence of triethylamine followed by the addition of PPh3 yielded the complex [Pt(κ2‐N7,S‐puS)(PPh3)2] ( 5 ). Complexes [Pt(κ2‐N7,S‐puS)(κ2‐P, P‐L‐L)] ( 6 – 8 ) {L‐L = dppm ( 6 ), dppp ( 7 ), dppb ( 8 )} were prepared similarly. The 1, 9‐dihydro‐purine‐6‐thione acts as N7,S‐chelating dianion in compounds 1 – 8 . The reaction of copper(I) chloride [or copper(I) bromide] in acetonitrile with puSH2 and the addition of PPh3 in methanol yielded the same product, [Cu(κ2‐N7,S‐puSH)(PPh3)2] ( 9 ), in which the halogen atoms are removed by uninegative N, S‐chelating puSH anion. However, copper(I) iodide did not lose iodide and formed the tetrahedral complex, [CuI(κ1‐S‐puSH2)(PPh3)2] ( 10 ), in which the thio ligand is neutral. These complexes were characterized with the help of elemental analysis, NMR spectroscopy (1H, 31P), and single‐crystal X‐ray crystallography ( 3 , 7 , 8 , 9 , and 10 ).  相似文献   

18.
Structural Chemistry of the Alkyl- and Arylhaloarsenates(III) [Me2As2Cl5], [RAsCl3], [R2As2Br6]2– (R = Me, Et, Ph) and [Ph2AsX2] (X = Cl, Br) The alkyl- and arylhaloarsenates(III) [Ph4P][Me2As2Cl5] ( 1 ), [Ph4P][RAsCl3] (R = Me, Et, Ph, 2 – 4 ), [Me3PhN][PhAsCl3] ( 5 ), [Ph4P]2[R2As2Br6] (R = Me, Et, Ph, 6 – 8 ), [n-Pr4N][Ph2AsCl2] ( 9 ) and [n-Bu4N][Ph2AsBr2] ( 10 ) have been prepared and their structures established by X-ray diffraction. In contrast to the chloroarsenates(III) 2 – 5 , which all contain isolated ψ-trigonal bipyramidal anions [RAsCl3], the analogous bromoarsenates(III) 6 – 8 exhibit dimeric structures. Whereas the trans sited As–Cl distances in 2 and 3 are very similar a pronounced degree of asymmetry is apparent for the Cl–As–Cl three-centre bonds in 4 and 5 [2.396(1) and 2.602(1) Å in 5]. In 6 and 7 Ci symmetry related RAsBr2 units are connected through long As…Br bonds [2.926(1) and 3.116(2) Å in 6 ]. The bromophenylarsenate(III) anion of 8 which contains two effectively undistorted ψ-trigonal bipyramids [PhAsBr3] associated by weak As…Br interactions [3.117(2) Å]. In view of its very long bridging As…Cl distances the [Me2As2Cl5] anion in 1 can, as 6 an 7 , be regarded as two MeAsCl2 molecules weakly linked through a chloride ion.  相似文献   

19.
Structural Interactions of Planar and Non‐planar Bis(1,2‐dithiosquarato)metalate Host Lattices with CuII Complexes – Structure and EPR Investigations 1,2‐Dithiosquaratometalates (M = Cu, Ni, Zn) are available by direct synthesis from metal salts with dipotassium‐1,2‐dithiosquarate. The structural influence of the planar and nonplanar host lattice systems (BzlEt3N)2[Cu/Ni(dtsq)2] and (BzlEt3N)2[Cu/Zn(dtsq)2] on the geometrical and electronic structure of the CuII guest complex [Cu(dtsq)2]2– is studied by EPR spectroscopy. The used host lattices (BzlEt3N)2[Ni(dtsq)2] (planar) and (BzlEt3N)2[Zn(dtsq)2] (tetrahedral) are characterized by X‐ray structure analysis. (BzlEt3N)2[Ni(dtsq)2] crystallizes in the triclinic unit cell P1 with a = 9.1021(8) Å, b = 9.4190(8) Å, c = 11.0119(10) Å, α = 92.8560(10)°, β = 95.375(2)°, γ = 104.5180(10)° and Z = 1. (BzlEt3N)2[Zn(dtsq)2] crystallizes in the monoclinic unit cell C2/c with a = 21.1299(14) Å, b = 16.6641(11) Å, c = 13.8324(9) Å, β = 123.9100(10)° and Z = 4. The g and A Cu tensors in the Cu/Ni system are nearly axial symmetric (g|| = 2.122, g = 2.028; A = –159.5 · 10–4 cm–1, A = –36.9 · 10–4 cm–1). The coordination geometry of the CuII guest complex in the tetrahedral Cu/Zn system is rather distorted, which is shown by the changed g and A Cu tensor parameters (g|| = 2.143, g = 2.042; A = –103.0 · 10–4 cm–1, A ≈ –5.0 · 10–4 cm–1). The spin density distribution is discussed using EHT molecular orbital calculations.  相似文献   

20.
Triphenylphosphane Nickel(0) Complexes with Isocyanide Ligands — [(RNC)nNi(PPh3)4–n] (n = 1–3) Synthesis and properties of the isocyanide triphenylphosphane nickel(0) complexes [(RNC)Ni(PPh3)3], [(RNC)2Ni(PPh3)2] and [(RNC)3Ni(PPh3)] (R = tBu, Cy, PhCH2, p-TosCH2) are described. I.r. and 31P n.m.r. spectra were recorded and the X-ray crystal structure of [(PhCH2NC)2Ni(PPh3)2] was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号