首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroxyl radical, hydrated electron and hydrogen atom intermediates of water radiolysis react with acetovanillone with rate coefficients of (1.05±0.1)×1010, (3.5±0.5)×109 and (1.7±0.2)×1010mol?1 dm3 s?1. Hydroxyl radical and hydrogen atom attach to the ring forming cyclohexadienyl type radicals. The hydroxyl–cyclohexadienyl radical formed in hydroxyl radical reaction in dissolved oxygen free solution partly transforms to phenoxyl radical. In the presence of O2 phenoxyl radical formation and ring destruction are observed. Hydrated electron in O2 free solution attaches to the carbonyl oxygen and undergoes protonation yielding benzyl type radical. In air saturated 0.5 mmol dm?3 solution using 15 kGy dose most part of acetovanillone is degraded, for complete mineralisation five times higher dose is required. The experiments clearly show that acetovanillone can be efficiently removed from water by applying irradiation technology.  相似文献   

2.
Rate constants for the reactions of Cl atoms with two cyclic dienes, 1,4‐cyclohexadiene and 1,5‐cyclooctadiene, have been determined, at 298 K and 800 Torr of N2, using the relative rate method, with n‐hexane and 1‐butene as reference molecules. The concentrations of the organics are followed by gas chromatographic analysis. The ratios of the rate constants of reactions of Cl atoms with 1,4‐cyclohexadiene and 1,5‐cyclooctadiene to that with n‐hexane are measured to be 1.29 ± 0.06 and 2.19 ± 0.32, respectively. The corresponding ratios with respect to 1‐butene are 1.50 ± 0.16 and 2.36 ± 0.38. The absolute values of the rate constants of the reaction of Cl atom with n‐hexane and 1‐butene are considered as (3.15 ± 0.40) × 10?10 and (3.21 ± 0.40) × 10? 10 cm3 molecule?1s?1, respectively. With these, the calculated values are k(Cl + 1,4‐cyclohexadiene) = (4.06 ± 0.55) × 10?10 and k(Cl + 1,5‐cyclooctadiene) = (6.90 ± 1.33) × 10?10 cm3 molecule?1 s?1 with respect to n‐hexane. The rate constants determined with respect to 1‐butene are marginally higher, k(Cl + 1,4‐cyclohexadiene) = (4.82 ± 0.80) × 10? 10 and k(Cl + 1,5‐cyclooctadiene) = (7.58 ± 1.55) × 10? 10 cm3 molecule?1 s?1. The experiments for each molecule were repeated three to five times, and the slopes and the rate constants given above are the average values of these measurements, with 2σ as the quoted error, including the error in the reference rate constant. The relative rate ratios of 1,4‐cyclohexadiene with both the reference molecules are found to be higher in the presence of oxygen, and a marginal increase is observed in the case of 1,5‐cyclooctadiene. Benzene is identified as one major product in the case of 1,4‐cyclohexadiene. Considering that the cyclohexadienyl radical, a product of the hydrogen abstraction reaction, is quantitatively converted to benzene in the presence of oxygen, the fraction of Cl atoms that reacts by abstraction is estimated to be 0.30 ± 0.04. The atmospheric implications of the results are discussed. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 431–440, 2011  相似文献   

3.
Atomic absorption and fluorescence spectrophotometry have been routinely used in kinetic investigations as probes of relative, rather than absolute, atom concentration. The calibration of a Lyman-α photometer for measurement of absolute hydrogen atom concentrations at levels [H] ι ≤ 1.8 × 1014 atoms/cm2 and total pressure of 1.5 torr He is described. The photometer is characterized in terms of a two-level emission source and an absorption region in which only Doppler broadening of the transition is considered. The modifications due to pressure broadening by high pressures (500 ≤ P ≤ 1500 torr) in the absorption region are discussed in detail. Application of the technique is reported for the recombination of hydrogen atoms in the presence of six nonreactive heat bath gases. Experiments were performed in a static reaction cell at pressures of 500–1500 torr of heat bath gas, and hydrogen atoms were produced by Hg (3P1) photosensitization of H2. The technique is critically evaluated and the mechanistic implications of the hydrogen atom recombination results are examined. The measured room temperature recombination rate constants in H2, He, Ne, Ar, Kr, and N2 are 8.5 ± 1.2, 6.9 ± 1.5, 5.9 ± 1.5, 8.0 ± 0.8, 10.2 ± 0.9, and 9.6 ± 1.4, respectively, where the units are 1033 cm6/molec2 · sec.  相似文献   

4.
The rate constant of the reaction of α-pinene with atomic hydrogen was determined at 295 K using the fast-flow reactor technique directly coupled to a mass spectrometric detection technique. The value was found to be equal to (9.8 ± 3.3) × 10?13 cm3 molecules?1 s?1 and independent of the helium pressure between 1 and 2 torr. The major reaction product formed is pinane showing that the stabilization of the adduct radical C10H, followed by a subsequent hydrogen atom addition step, is the important reaction route. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Rate coefficients have been determined for the gas‐phase reaction of the hydroxyl (OH) radical with the aromatic dihydroxy compounds 1,2‐dihydroxybenzene, 1,2‐dihydroxy‐3‐methylbenzene and 1,2‐dihydroxy‐4‐methylbenzene as well as the two benzoquinone derivatives 1,4‐benzoquinone and methyl‐1,4‐benzoquinone. The measurements were performed in a large‐volume photoreactor at (300 ± 5) K in 760 Torr of synthetic air using the relative kinetic technique. The rate coefficients obtained using isoprene, 1,3‐butadiene, and E‐2‐butene as reference hydrocarbons are kOH(1,2‐dihydroxybenzene) = (1.04 ± 0.21) × 10−10 cm3 s−1, kOH(1,2‐dihydroxy‐3‐methylbenzene) = (2.05 ± 0.43) × 10−10 cm3 s−1, kOH(1,2‐dihydroxy‐4‐methylbenzene) = (1.56 ± 0.33) × 10−10 cm3 s−1, kOH(1,4‐benzoquinone) = (4.6 ± 0.9) × 10−12 cm3 s−1, kOH(methyl‐1,4‐benzoquinone) = (2.35 ± 0.47) × 10−11 cm3 s−1. This study represents the first determination of OH radical reaction‐rate coefficients for these compounds. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 696–702, 2000  相似文献   

6.
Reactions of ozone with simple olefins have been studied between 6 and 800 mtorr total pressure in a 220-m3 reactor. Rate constants for the removal of ozone by an excess of olefin in the presence of 150 mtorr oxygen were determined over the temperature range 280 to 360° K by continuous optical absorption measurements at 2537 Å. The technique was tested by measuring the rate constants k1 and k2 of the reactions (1) NO + O3 → NO2 + O2 and (2) NO2 + O3 rarr; NO3 + O2 which are known from the literature. The results for NO, NO2, C2H4, C3H6, 2-butene (mixture of the isomers), 1,3→butadiene, isobutene, and 1,1 -difluoro-ethylene are 1.7 × 10?1 4 (290°K), 3.24 × 10?17 (289°K), 1.2 × 10?1 4 exp (–4.95 ± 0.20/RT), 1.1 × 10?1 4 exp (–3.91 ± 0.20/RT), 0.94 × 10?1 4 exp ( –2.28 ± 0.15/RT), 5.45 ± 10?1 4 exp ( –5.33 ± 0.20/RT), 1.8 ×10?17 (283°K), and 8 × 10?20 cm3/molecule ·s(290°K). Productformation from the ozone–propylene reaction was studied by a mass spectrometric technique. The stoichiometry of the reaction is near unity in the presence of molecular oxygen.  相似文献   

7.
Rate constants of Br atom reactions have been determined using a relative kinetic method in a 20 l reaction chamber at total pressures between 25 and 760 torr in N2 + O2 diluent over the temperature range 293–355 K. The measured rate constants for the reactions with alkynes and alkenes showed dependence upon temperature, total pressure, and the concentration of O2 present in the reaction system. Values of (6.8 ± 1.4) × 10?15, (3.6 ± 0.7) × 10?14, (1.5 ± 0.3) × 10?12, (1.6 ± 0.3) × 10?13, (2.7 ± 0.5) × 10?12, (3.4 ± 0.7) × 10?12, and (7.5 ± 1.5) × 10?12 (units: cm3 s?1) have been obtained as rate constants for the reactions of Br with 2,2,4-trimethylpentane, acetylene, propyne, ethene, propene, 1-butene, and trans-2-butene, respectively, in 760 torr of synthetic air at 298 K with respect to acetaldehyde as reference, k = 3.6 × 10?12 cm3 s?1. Formyl bromide and glyoxal were observed as primary products in the reaction of Br with acetylene in air which further react to form CO, HBr, HOBr, and H2O2. Bromoacetaldehyde was observed as an primary product in the reaction of Br with ethene. Other observed products included CO, CO2, HBr, HOBr, BrCHO, bromoethanol, and probably bromoacetic acid.  相似文献   

8.
The photo-cleavage of S S bond of 5,5′-dithiobis (1-phenyl-1H-tetrazole) has been studied by the nanosecond-laser flash photolysis method. The transient absorption band at ca. 430 nm was attributed to 1-phenyl-1H-tetrazole-5-thio radical forming by the S S bond fission. For the reaction with conjugated dienes, an addition reaction takes place forming the S C bond, suggesting that unpaired electron of the radical localizes mainly on the S-atom. From the decay rates of the radical, the addition reaction rate constant for 2-methyl-1,3-butadiene is evaluated to be 5.5 × 109 M−1 s−1 in THF at 23°C, which is as fast as diffusion controlled limit. The reactivity of the radical is ca. 100 times higher than that of the PhS˙. The reactivity of the thio radical to O2 was too low to evaluate, which is one of the characteristics of a S-centered radical. The rate constant for 1,4-cyclohexadienene (1.4 × 108 M−1 s−1) is larger than that of cyclohexene (2.8 × 107 M−1 s−1) suggesting the hydrogen abstraction is a main reaction. The MO calculations have been performed for these radicals to reveal the reason of the high reactivity of the radical. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The reaction of NO with the peroxy radical CFCl2CH2O2, and with CH3CFClO2 was investigated at 8(SINGLEBOND)20 torr and 263(SINGLEBOND)321 K by UV flash photolysis of CFCl2CH3/O2/NO gas mixtures. The kinetics were determined from observations of the growth rate of the CFCl2CH2O radical and the decay rate of NO by time-resolved mass spectrometry. The temperature dependence of the bimolecular rate coefficients, with their statistical uncertainties, can be expressed as (2.9 ± 0.7) e(435±96)/T × 10−12 cm3 molecule −1s−1, or (1.3 ± 0.2) (T/300)&minus(1.5±0.2) × 10−11 cm3 molecule−1 s−1 for NO + CFCl2CH2O2, and (3.3 ± 0.6)e(516±73)/T × 10−12 cm3 molecule−1 s−1, or (2.0 ± 0.3) (T/300)&minus(1.8±0.3) × 10−11 cm3 molecule−1 s−1 for NO + CH3CFClO2. No pressure dependence of the rate coefficients could be detected over the 8(SINGLEBOND)20 torr range investigated. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
The reactions of hydroxyl radicals with eight substituted aromatic hydrocarbons and four olefins were studied utilizing the flash photolysis–resonance fluorescence technique. The rate constants were measured at 298°K using either Ar or He as the diluent gas. The values of the rate constants (k × 1012) in the units of cm3/molec. sec are
    相似文献   

11.
The kinetics of the gas-phase reactions of 1,4-benzodioxan, 2,3-dihydrobenzofuran, and 2,3-benzofuran with OH radicals and O3 have been studied at 298 ± 2 K and atmospheric pressure of air and the products have also been investigated. 1,4-Benzodioxan and 2,3-dihydrobenzofuran were chosen as volatile model compounds for dibenzo-p-dioxin and dibenzofuran, respectively. The rate constants, or upper limits thereof, for the O3 reactions were (in cm3 molecule?1 s?1 units): 1,4-benzodioxan, <1.2 × 10?20; 2,3-dihydrobenzofuran, <1 × 10?19; and 2,3-benzofuran, (1.83 ± 0.21) × 10?18. Using a relative rate method, the rate constants for the OH radical reactions (in cm3 molecule?1 s?1 units) were: 1,4-dibenzodioxan, (2.52 ± 0.38) × 10?11; 2,3-dihydrobenzofuran, (3.66 ± 0.56) × 10?11; and 2,3-benzofuran, (3.73 ± 0.74) × 10?11. Salicylaldehyde was observed as a product of the OH radical-initiated and O3 reactions of 2,3-benzofuran, with measured formation yields of 0.26 ± 0.05 and 0.13 ± 0.07, respectively.  相似文献   

12.
The production and reactions of vinyl radicals and hydrogen atoms from the photolysis of vinyl iodide (C2H3I) at 193 nm have been examined employing laser photolysis coupled to kinetic-absorption spectroscopic and gas chromatographic product analysis techniques. The time history of vinyl radicals in the presence of hydrogen atoms was monitored using the 1,3-butadiene (the vinyl radical combination product) absorption at 210 nm. By employing kinetic modeling procedures a rate constant of 1.8 × 10?10 cm2 molecule?1 s?1 for the reaction C2H3 + H has been determined at 298 K and 27 KPa (200 torr) pressure. A detailed error analysis for determination of the C2H3 + H reaction rate constant, the initial C2H3 and H concentrations are performed. A combined uncertainty of ±0.43 × 10?10 cm2 molecule?1 s?1 for the above measured rate constant has been evaluated by combining the contribution of the random errors and the systematic errors (biases) due to uncertainties of each known parameter used in the modeling. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Rate coefficients and/or mechanistic information are provided for the reaction of Cl‐atoms with a number of unsaturated species, including isoprene, methacrolein ( MACR ), methyl vinyl ketone ( MVK ), 1,3‐butadiene, trans‐2‐butene, and 1‐butene. The following Cl‐atom rate coefficients were obtained at 298 K near 1 atm total pressure: k(isoprene) = (4.3 ± 0.6) × 10?10cm3 molecule?1 s?1 (independent of pressure from 6.2 to 760 Torr); k( MVK ) = (2.2 ± 0.3) × 10?10 cm3 molecule?1 s?1; k( MACR ) = (2.4 ± 0.3) × 10?10 cm3 molecule?1 s?1; k(trans‐2‐butene) = (4.0 ± 0.5) × 10?10 cm3 molecule?1 s?1; k(1‐butene) = (3.0 ± 0.4) × 10?10 cm3 molecule?1 s?1. Products observed in the Cl‐atom‐initiated oxidation of the unsaturated species at 298 K in 1 atm air are as follows (with % molar yields in parentheses): CH2O (9.5 ± 1.0%), HCOCl (5.1 ± 0.7%), and 1‐chloro‐3‐methyl‐3‐buten‐2‐one (CMBO, not quantified) from isoprene; chloroacetaldehyde (75 ± 8%), CO2 (58 ± 5%), CH2O (47 ± 7%), CH3OH (8%), HCOCl (7 ± 1%), and peracetic acid (6%) from MVK ; CO (52 ± 4%), chloroacetone (42 ± 5%), CO2 (23 ± 2%), CH2O (18 ± 2%), and HCOCl (5%) from MACR ; CH2O (7 ± 1%), HCOCl (3%), acrolein (≈3%), and 4‐chlorocrotonaldehyde (CCA, not quantified) from 1,3‐butadiene; CH3CHO (22 ± 3%), CO2 (13 ± 2%), 3‐chloro‐2‐butanone (13 ± 4%), CH2O (7.6 ± 1.1%), and CH3OH (1.8 ± 0.6%) from trans‐2‐butene; and chloroacetaldehyde (20 ± 3%), CH2O (7 ± 1%), CO2 (4 ± 1%), and HCOCl (4 ± 1%) from 1‐butene. Product yields from both trans‐2‐butene and 1‐butene were found to be O2‐dependent. In the case of trans‐2‐butene, the observed O2‐dependence is the result of a competition between unimolecular decomposition of the CH3CH(Cl)? CH(O?)? CH3 radical and its reaction with O2, with kdecomp/kO2 = (1.6 ± 0.4) × 1019 molecule cm?3. The activation energy for decomposition is estimated at 11.5 ± 1.5 kcal mol?1. The variation of the product yields with O2 in the case of 1‐butene results from similar competitive reaction pathways for the two β‐chlorobutoxy radicals involved in the oxidation, ClCH2CH(O?)CH2CH3 and ?OCH2CHClCH2CH3. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 334–353, 2003  相似文献   

14.
3-Methylfuran has been identified as a product of the gas-phase reaction of the OH radical with isoprene, and under simulated atmospheric conditions a formation yield of 0.044 ± 0.006 was determined. In an analogous manner, the OH radical reaction with 1,3-butadiene formed furan with a yield of 0.039 ± 0.011. Using a relative rate method, a rate constant for the reaction of the OH radical with 3-methylfuran of 9.35 × 10?11 cm3 molecule?1 s?1 (with an estimated overall uncertainty of ±20%) at 296 ± 2 K was also determined. These data show that 3-methylfuran is a reactive compound which will be present in the troposphere at concentrations ?5% of those of its isoprene precursor.  相似文献   

15.
The yield of benzene in the reaction of 1,4- and 1,3-cyclohexadiene with OH radicals in the presence of oxygen was determined using H2O2 and CH3ONO as OH radical sources. Both in the H2O2 and the CH3ONO systems, the yield of benzene from 1,4-cyclohexadiene was 15.3% and the yield from 1,3-cyclohexadiene was 8.9%. On the basis of the obtained yields, the rate constant for allylic hydrogen abstraction per C? H in cyclohexadiene was determined to be 3.8 × 10?12 cm3 molecule?1 s?1. The branching ratio of the hydrogen abstraction to overall reaction for 1-butene and 1-pentene was estimated to be (25–14)% by applying the obtained rate constants. The result was in good agreement with the branching ratio determined directly by use of the discharge flow photoionization mass spectrometer by Biermann, Harris, and Pitts [4].  相似文献   

16.
The kinetics of the gas-phase reactions of allyl chloride and benzyl chloride with the OH radical and O3 were investigated at 298 ± 2 K and atmospheric pressure. Direct measurements of the rate constants for reactions with ozone yielded values of ??(O3 + allyl chloride) = (1.60 ± 0.18) × 10?18 cm3 molecule?1 s?1 and ??(O3 + benzyl chloride) < 6 × 10?20 cm3 molecule?1 s?1. With the use of a relative rate technique and ethane as a scavenger of chlorine atoms produced in the OH radical reactions, rate constants of ??(OH + allyl chloride) = (1.69 ± 0.07) × 10?11 cm3 molecule?1 s?1 and ??(OH + benzyl chloride) = (2.80 ± 0.19) × 10?12 cm3 molecule?1 s?1 were measured. A study of the OH radical reaction with allyl chloride by long pathlength FT-IR absorption spectroscopy indicated that the co-products ClCH2CHO and HCHO account for ca. 44% of the reaction, and along with the other products HOCH2CHO, (ClCH2)2CO, and CH2 ? CHCHO account for 84 ± 16% of the allyl chloride reacting. The data indicate that in one atmosphere of air in the presence of NO the chloroalkoxy radical formed following OH radical addition to the terminal carbon atom of the double bond decomposes to yield HOCH2CHO and the CH2Cl radical, which becomes a significant source of the Cl atoms involved in secondary reactions. A product study of the OH radical reaction with benzyl chloride identified only benzaldehyde and peroxybenzoyl nitrate in low yields (ca. 8% and ?4%, respectively), with the remainder of the products being unidentified.  相似文献   

17.
The gas phase, nitric oxide catalyzed positional isomerization of 3-methylene-1,5,5-trimethylcyclohexene (MTC) into 1,3,5,5-tetramethyl-1,3-cyclohexadiene (TECD) has been studied for temperatures ranging between 296° and 425°C. The major reaction was first order with respect to nitric oxide and to MTC. The major side product, mesitylene, usually amounted to less than 10% of the TECD isomer formed. Only at high temperatures and large conversions has up to 20% been observed. Conditioned pyrex or quartz vessels coated with KCl have been used. The nitric oxide catalyzed isomerization is apparently a homogeneous process, as demonstrated by the insensitivity of the observed rate constants towards a 15-fold increase in the surface to volume ratio of the reaction vessels. However, a residual, presumably heterogeneous, thermal isomerization of the starting material could not be eliminated. Good mass balances were obtained for both NO and hydrocarbons. After correcting for the thermally induced conversion the observed rate constants for the nitric oxide catalyzed isomerization yield log k1 (1 mole?1 sec?1) = (10.7 ± 0.2) – (37.3 ± 0.9)/θ where θ is 2.303 × 10?3 RT (kcal mole?1). Plotting log k1 versus the ratio of the starting materials (MTC/NO)0 it was found that for temperatures ≥ 365°C the rate constants were systematically too high. Using extrapolated values for the higher temperature range yields the more reliable corrected Arrhenius equation log k = 8.6 – 31.7/θ. The reaction mechanism is outlined and the implications with respect to the stabilization energy generated in the MTC? radical intermediate and the activation energy of the backreaction MTC? + HNO are discussed. Using for the activation energy E?1 of the backreaction (R? + HNO) a literature value of 9.2 ± 0.9 kcal mole?1 reported for the cyclohexadiene? 1,3? system, this yields 23.4 ± 2 kcal mole?1 for the stabilization energy in the methylenecyclohexenyl radical, which is to be compared with the corresponding values for the allyl (10.2 ± 1.4), methallyl (12.6 ± 1) pentadienyl (15.4 ± 1) and cyclohexadienyl (24.6 ± 0.7) radicals. The pre-exponential factor agrees well with the value of (8.4 ± 0.2) reported by Shaw and co-workers for the similar reaction of NO with 1,3-cyclohexadiene. It is noteworthy that HNO, acting as sole hydrogen donor in the system, is surprisingly stable under the reaction conditions used. Nitrous oxide, HCN, H2O and N2 are observed in the product mixture of experiments carried out to high conversions at higher temperatures.  相似文献   

18.
Rate constants for the gas phase reactions of O3 and OH radicals with 1,3-cycloheptadiene, 1,3,5-cycloheptatriene, and cis- and trans-1,3,5-hexatriene and also of O3 with cis-2,trans-4-hexadiene and trans -2,trans -4-hexadiene have been determined at 294 ± 2 K. The rate constants determined for reaction with O3 were (in cm3 molecule-1s?1 units): 1,3-cycloheptadiene, (1.56 ± 0.21) × 10-16; 1,3,5-cycloheptatriene, (5.39 ± 0.78) × 10?17; 1,3,5-hexatriene, (2.62 ± 0.34) × 10?17; cis?2,trans-4-hexadiene, (3.14 ± 0.34) × 10?16; and trans ?2, trans -4-hexadiene, (3.74 ± 0.61) × 10?16; with the cis- and trans-1,3,5-hexatriene isomers reacting with essentially identical rate constants. The rate constants determined for reaction with OH radicals were (in cm3 molecule?1 s?1 units): 1,3-cycloheptadiene, (1.31 ± 0.04) × 10?10; 1,3,5-cycloheptatriene, (9.12 × 0.23) × 10?11; cis-1,3,5-hexatriene, (1.04 ± 0.07) × 10?10; and trans 1,3,5-hexatriene, (1.04 ± 0.17) × 10?10. These data, which are the first reported values for these di- and tri-alkenes, are discussed in the context of previously determined O3 and OH radical rate constants for alkenes and cycloalkenes.  相似文献   

19.
Relative rate constants for the gas-phase reactions of OH radicals with a series of cycloalkenes have been determined at 298 ± 2 K using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with isoprene of 9.60 × 10?11 cm3 molecule?1 s?1, the rate constants obtained were (X 1011 cm3 molecule?1 s?1): cyclopentene 6.39 ± 0.23, cyclohexene 6.43 ± 0.17, cycloheptene 7.08 ± 0.22, 1,3-cyclohexadiene 15.6 ± 0.5, 1,4 cyclohexadiene 9.48 ± 0.39, bicyclo[2.2.1]-2-heptene 4.68 ± 0.39, bicyclo[2.2.1] 2,5 heptadiene 11.4 ± 1.0, and bicyclo[2.2.2] 2 octene 3.88 ± 0.19. These data show that the rate constants for the nonconjugated cycloalkenes studied depend on the number of double bonds and the degree of substitution per double bond, and indicate that there are no obvious effects of ring strain energy on these OH radical addition rate constants. A predictive technique for the estimation of OH radical rate constants for alkenes and cycloalkenes is presented and discussed.  相似文献   

20.
The elimination kinetics of 2-chloropropionic acid have been studied over the temperature range of 320–370.2°C and pressure range of 79–218.5 torr. The reaction in seasoned vessel and in the presence of the free radical suppressor cyclohexene, is homogeneous, unimolecular, and obeys a first-order rate law. The dehydrochlorination products are acetaldehyde and carbon monoxide. The rate coefficient is expressed by the following Arrhenius equation: log k1(s?1) = (12.53 ± 0.43) – (186.9 ± 5.1) kJ mol?1 (2.303RT)?1. The hydrogen atom of the carboxylic COOH appears to assist readily the leaving chloride ion in the transition state, suggesting an intimate ion pair mechanism operating in this reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号