首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 563 毫秒
1.
A new PVC membrane sensor, which is highly selective towards Ni (II) ions, has been developed using a thiophene-derivative Schiff base as the ionophore. The best performance was exhibited by the membrane having the composition percentage ratio of 5:3:61:31 (ionophore:NaTPB:DBP:PVC) (w/w), where NaTPB is the anion excluder, sodium tetraphenylborate and DBP is the plasticizing agent (dibutyl phthalate). The membrane exhibited a good Nernstian response for nickel ions over the concentration range of 1.0 × 10−1–5.0 × 10−6 M (limit of detection is 1.8 × 10−6 M) with a slope of 29.5 ± 1.0 mV per decade of activity. It has a fast response time of <20 s and can be used for a period of 4 months with good reproducibility. The sensor is suitable for use in aqueous solutions of a wide pH range of 3.2–7.9. The sensor shows high selectivity to nickel ions over a large number of mono-, bi- and trivalent cations. It has been successfully used as an indicator electrode in the potentiometric titration of nickel ions against EDTA and also for direct determination of nickel content in real samples – wastewater samples from electroplating industries and Indian chocolates.  相似文献   

2.
A new poly(vinyl chloride)-based membrane was fabricated with the cobalt(II) complex of 2,4-dimethyl-1,5,8,11-tetraazacyclotrideca-1,4-diene [Me2(13)dieneN4] as an ion carrier. The membrane composition was Co2+ complex/PVC/NaTPB/DBP 15:50:15:20 (w/w). The sensor exhibited a Nernstian response for Co2+ ions over a wide concentration range (7.94×10−6–1.0×10−1 M) at pH 2.5–7.0, a response time of 10 s, and it could be used for 3 months without any significant divergence in potential. The proposed membrane sensor exhibited good selectivity for Co2+ over a wide variety of other metal ions and in mixtures containing up to 25% (v/v) non-aqueous content. The sensor was successfully used as an indicator electrode in the potentiometric titration of Co2+ with EDTA and the direct determination of Co2+ in real samples.  相似文献   

3.
Pankaj Kumar 《Electroanalysis》2012,24(10):2005-2012
A new ionophore, i.e. p‐(2‐thiazolazo)calix[4]arene ( I ) has been explored for its selective behavior towards Ni(II) ions. A poly(vinyl chloride) based membrane containing ( I ) as an electroactive material along with sodiumtetraphenylborate (NaTPB), and nitrophenyloctyl ether in the ratio 10 : 100 : 3 : 150 (I:PVC:NaTPB:NPOE) (w/w) was used to fabricate an all solid state nickel(II)‐selective sensor. The developed sensor exhibited a working concentration range of 1.0×10?6–1.0×10?1 M, with a Nernstian slope of 28.9±1.0 mV/decade of activity and a response time of 10–15 s. This sensor shows a detection limit of 9.0×10?7 M. Its potential response remains unaffected of pH in the range 3.0–7.6, and the cell assembly could be used successfully in partially nonaqueous medium (up to 10 % v/v) without any significant change in the slope value or the working concentration range. The sensor worked satisfactorily for about ten weeks and exhibited excellent selectivity over a number of mono‐, bi‐, and tri‐valent cations including alkali, alkaline earth metal, and transition metal ions. It could be used as an indicator electrode for the end point determination in the potentiometric titration of nickel ions against ethylenediaminetetraacetic acid (EDTA) as well as for the determination of nickel ion concentration in real samples.  相似文献   

4.
A new Cu (II) ion-selective electrode has been fabricated in poly (vinyl chloride) matrix based on a recently synthesized Schiff-base chelate. The addition of sodium tetraphenylborate (NaTPB) and various plasticizers viz. TBP, TEHP, DOS, and CN have been found to substantially improve the performance of the electrode. The membrane of various compositions of the ionophore (I) were investigated and it was found that the best performance was obtained with the membrane having (I): PVC: NaTPB: CN in the ratio 4: 140: 3: 80 (mg). The electrode exhibits a Nernstian response over a wide concentration range (1.9 × 10−6–1.0 × 10−1 M) with 30.0 mV/decade of concentration between pH 3.0 and 7.5. The response time of the electrode is about 12 s and it can be used over a period of 3 months without any divergence in potential. The potentiometric selectivity coefficient values as determined by fixed interference method indicate excellent selectivity for Cu2+ ions over interfering cations. The electrode has also been used successfully in partially non-aqueous media having a 25% (v/v) methanol, ethanol or acetone content without showing any considerable change in the value of slope or working concentration range. The electrode has been used in the potentiometric titration of Cu2+ with EDTA.  相似文献   

5.
A triiodide-selective electrode based on copper (II)-Schiff base complex as a membrane carrier is proposed. The electrode was prepared by incorporating the carrier into a plasticized polyvinylchloride (PVC) membrane and was directly coated on the surface of a graphite electrode. The obtained electrode showed a near Nernstian slope of 57.0 ± 0.4 mV/decade to I 3 ions over an activity range of 1.0 × 10−5−1.0 × 10−1 M with a limit of detection of 4.8 × 10−6 M. The response time of the electrode was fast (5 s) and the electrode could be used for about 2 months without considerable divergence in response. The potentiometric selectivity coefficients were evaluated and displayed anti-Hofmeister behavior. The electrode was used as an indicator electrode in the potentiometric titration of the triiodide ion and in the determination of ascorbic acid in vitamin C tablets. The text was submitted by the authors in English.  相似文献   

6.
《Electroanalysis》2005,17(17):1534-1539
The construction, performance, and applications of a novel ytterbium(III) sensor based on N‐(2‐pyridyl)‐N′‐(2‐methoxyphenyl)‐thiourea (PMT), as an excellent carrier, in plasticized poly(vinyl chloride) PVC matrix, is described. The influences of membrane composition and pH on the potentiometric response of the sensor were investigated. The sensor exhibits a nice Nernstian response for Yb(III) ion over a wide concentration range of 4 decades of concentration (1.0×10?6–1.0×10?2 M), and a detection limit of 5.0×10?7 M. The response time of the electrodes is between 8 and 10 s, depending on the concentration of ytterbium(III) ions. The proposed sensor can be used for about 8 weeks without any considerable divergence in potential. The sensor revealed very good selectivity for Yb(III) in the presence of several metal ions. The best performance was observed for the membrane containing; 30% PVC, 59% o‐nitrophenyloctyl ether (NPOE) as solvent mediator, 7% PMT, and 4% sodium tetraphenyl borate (NaTPB). It was successfully applied as indicator electrodes in the potentiometric titration of Yb(III) with EDTA and for the determination of fluoride ion in two mouth wash formulations. The proposed La(III) sensor was found to work well under laboratory conditions. It was also used as an indicator electrode in titration of a 1.0×10?4 M of Yb(III) with a standard EDTA solution (1.0×10?2 M). It was also used for determination of Yb(III) ion in Xenotime .  相似文献   

7.
《Electroanalysis》2006,18(9):888-893
A poly(vinyl chloride)‐based membrane of dimethyl 1‐acetyl‐8‐oxo‐2,8‐dihydro‐1H‐pyra‐zolo[5,1‐a]isoindole‐2,3‐dicarboxylate as a neutral carrier with sodium tetraphenylborate (NaTPB) as an anion excluder and 2‐nitrophenyl octyl ether (NPOE) as plasticizer was prepared and investigated as a Ba(II)‐selective electrode. The electrode exhibits a Nernstian slope of 29.7±0.4 mV per decade over a wide concentration range (1.0×10?6 to 1.0×10?1 M) with a detection limit of 7.6×10?7 M between pH 3.0 and 11.0. The response time of the sensor is about 10 s and it can be used over a period of 2 months without any divergence in potential. The proposed membrane sensor revealed good selectivity for Ba(II) over a wide variety of other metal ions. It was successfully used in direct determination of barium ions in industrial wastewater samples.  相似文献   

8.
A polystyrene-based membrane of 7,8:16,17-dibenzo-6,9,15,18-tetraoxo-1,5,10,14-tetrathiacyclooctadeca-7,16-diene [Bz2Oxo4(18)dieneS4] was fabricated using sodium tetraphenylborate (NaTPB) and dioctyl phthalate (DOP) as anion excluder and plasticizing agent. The best performance was obtained from the membrane with the composition ionophore [Bz2Oxo4(18)dieneS4]:polystyrene:DOP:NaTPB, 5:100:150:10 (w/w). The response of the electrode was linear over a wide range of concentration, 1.26×10–6–1.00×10–1 mol L−1 for silver ion with a Nernstian slope of 58.4±0.1 mV per decade and a detection limit of 1.0×10−6 mol L−1. The electrode was found to be chemically inert and of adequate stability with a response time of 10 s and could be used for a period of 3 months without change of potential. It worked satisfactorily in mixtures containing up to 35% (v/v) non-aqueous content. The proposed membrane sensor had good selectivity for Ag+ over a wide variety of metal ions in the pH range 2.2–8.5. It was successfully used as an indicator electrode in potentiometric titration of silver ion. The electrode was also useful for determination of Ag+ in waste from photographic films.  相似文献   

9.
In this work, for the first time, we introduce a highly selective and sensitive Be(II) microsensor. 4-nitrobenzo-9-crown-3-ether (NBCE) was used as a membrane-active component to prepare a Be(II)-selective polymeric membrane microelectrode. The electrode exhibits a Nernstian response toward Be(II) ions over a very wide concentration range (1.0 × 10−4–1.0 × 10−10 M), with a detection limit of 3.5 × 10−11 M (∼350 pg/L). In fact, the electrode presents a fast response time in the whole concentration range (6 s). The proposed microelectrode can be used for at least six weeks without any considerable divergence in the potentials. The proposed membrane sensor revealed a selectivity toward Be(II) ions over a wide variety of other metal ions including common alkali, alkaline-earth, and rare-earth ions. It could be used in the pH range of 3.0–11.5. The microelectrode was successfully used as an indicator electrode for the titration of 20 mL of 1.0 × 10−6 M Be2+ solution with 1.0 × 10−4 M of EDTA. It was also applied to the direct determination of beryllium ions in beryl and binary mixtures. The text was submitted by the authors in English.  相似文献   

10.
A new modified carbon paste electrode based on a recently synthesized mercury (II) complex of a pyridine containing proton transfer compound as a suitable carrier for Br ion is described. The electrode has a linear dynamic range between 3.00×10−2 and 1.0×10−5 M with a near-Nernastian slope of 61.0±0.9 mV per decade and a detection limit of 4.0×10−6 M (0.32 ppm). The potentiometric response is independent of the pH of the solution in the pH range 4.0–8.3. The electrode possesses the advantages of low resistance, fast response and good over a variety of other anions. It was applied as an indicator electrode in potentiometric titration of bromide ions and for the recovery of Br from tap water.  相似文献   

11.
A new polystyrene based membrane electrode of methyl substituted 6,7:13,14-dibenzo-2,4,9,11-tetraphenyl-1,5,8,12-tetraazacyclotetradeca-1,4,6,8,11,13-hexaene (I) with sodium tetraphenylborate (NaTPB) and dibutyl phthalate (DBP) as anion excluder and plasticizing agent was prepared and investigated as Hg (II)-selective electrode. The electrode exhibits a Nernstian response for Hg (II) ions over a wide concentration range of 1.0 × 10−1–8.9 × 10−6 M with a slope of 30 ± 1 mV per decade concentration. It has a response time of 10 s and can be used for at least 4 months without any divergence in potentials. The membrane works satisfactorily in a partially non-aqueous medium up to a maximum 30% (v/v) content of methanol and ethanol. The proposed sensor revealed good selectivity over a wide variety of other cations including alkali, alkaline earth, heavy and transition metal ions and could be used in a pH range of 2.5–5.0. Normal interferents like Ag+, Cd2+ and Pb2+ low interfere in the working of the electrode. The electrode was successfully used in the direct determination of Hg2+ in aqueous solution.  相似文献   

12.
《Analytical letters》2012,45(3):495-506
Abstract

A Dy(III) ion‐selective membrane sensor has been fabricated from polyvinyl chloride (PVC) matrix membrane containing a new asymmetrical Schiff's base [(E)‐N‐(2‐hydroxybenzylidene)benzohydraide] or BBH as a neutral carrier, sodium tetraphenyl borate (NaTPB) as an anionic excluder and nitrobenzene (NB) as a plasticizing solvent mediator. The membrane sensor displays linear potential response in the concentration range of 1.0×10?2–1.0×10?6 M of Dy(III). The electrode exhibits a nice Nernstian slope of 20.1±0.8 mV/decade in the pH range of 3.0–8.0. The sensor has a relatively short response time in whole concentration ranges (<20 s). The detection limit of the proposed sensor is 8.0×10?7 M (~128 ng/mL), and it can be used over a period of six weeks. The selectivity of the proposed sensor with respect to other cations, (alkali, alkaline earth, transition and heavy metal ions) and especially lanthanid ions, is excellent. The practical utility of the sensor has been demonstrated by using it as an indicator electrode in the potentiometric titration of Dy(III) with EDTA.  相似文献   

13.
《Analytical letters》2012,45(13):2322-2343
Abstract

In this research, a novel thulium(III) potentiometric membrane sensor based on 4-methyl-1,2-bis(2-pyridinecarboxamido) benzene (MPB) is described. The sensor exhibits a Nernstian response over a concentration range of 1.0 × 10?7 M to 1.0 × 10?1 M, with a detection limit of 9.0 × 10?8 M. The best performance was achieved with a membrane composition of 30% PVC, 60% nitrobenzene (NB), 6% MPB, and 4% sodium tetraphenylborate (NaTPB). It was found that at the pH range of 3.6 to 9.0, the potential response of the sensor was not affected by the pH. Furthermore, the electrode presents satisfactory reproducibility, very fast response time (15 s), and relatively good discriminating ability for Tm(III) ions with respect to many common cations and lanthanide ions. The validation of the proposed electrode was tested by using Coal and Fuel Ash (FFA 1 Fly Ash) as a Certified Reference Material (CRM).  相似文献   

14.
A polymeric membrane based Pb(II) selective potentiometric sensor was developed by using 1,3,7,9-tetraaza-2,8-dithia-4,10-dimethyl-6,12-diphenylcyclododeca-4,6,10,12-tetraene (TDDDCT) as an electroactive material along with anion excluder sodium tetraphenylborate (NaTPB) and plasticizer dioctylphthalate (DOP). The best performance in terms of slope, concentration range and response time was exhibited by the membrane having TDDDCT:PVC:DOP:NaTPB in the ratio 3:32:62:3 (w/w%). Potentiometric results show that the developed sensor works well in the concentration range 5.0 × 10?7–1.0 × 10?1 M with a near Nernstian slope of 29.5 (±0.5) mV decade?1. The detection limit is down to 2.5 × 10?7 M. The working pH range of this sensor is 2.8–7.0 and it works well in partially nonaqueous medium up to 25 % (v/v) methanol and ethanol. It exhibits a fast response time of 10 s. Selectivity coefficient values of various interfering ions were determined by the fixed interference method (FIM). The sensor reveals good selectivity for Pb(II) ions over other metal ions investigated. The developed sensor is used in the determination of lead in ‘Eveready battery waste’ and as an indicator electrode in the potentiometric titration of Pb(II) against EDTA.  相似文献   

15.
A potentiometric azide-selective sensor based on the use of iron(III) hydrotris(3,5-dimethylpyrazolyl)borate acetylacetonate chloride [TpMe2Fe(acac)Cl] as a neutral carrier for an azide-selective electrode is reported. Effect of various plasticizers, viz. o-nitrophenyloctyl ether (o-NPOE), dioctylphthalate (DOP), dibutylphthalate (DBP), and benzylacetate (BA), and an anion excluder, hexadecyltrimethylammonium bromide (HTAB), with [TpMe2Fe(acac)Cl] complex in poly(vinyl chloride) (PVC) were studied. The best performance was obtained with a membrane composition of [TpMe2Fe(acac)Cl]/HTAB/DOP/PVC in a ratio of 5:2:190:100 (w/w). The sensor exhibits significantly enhanced selectivity toward azide ions over the concentration range 6.3 × 10−7 to 1.0 × 10−2 M with a lower detection limit of 3.8 × 10–7 M and a Nernstian slope of 59.4 ± 1.1 mV decade−1. Influences of the membrane composition, pH and possible interfering anions were investigated on the response properties of the electrode. Fast and stable response, good reproducibility, long-term stability and applicability over a wide pH range (3.5–9.0) are demonstrated. The sensor has a response time of 14 s and can be used for at least 45 days without any considerable divergence in the potential response. The proposed electrode shows fairly good discrimination of azide from several inorganic and organic anions. It was successfully applied to the direct determination of azide in orange juice, tea extracts and human urine samples.  相似文献   

16.
A new simple and inexpensive optical chemical sensor for cadmium(II) ions is presented. The cadmium sensing system was prepared by incorporating 2-amino-cyclopentene-1-dithiocarboxylic acid (ACDA) on a triacetylcellulose membrane. The absorption spectra of the optical sensor membrane in Cd(II) solution showed a maximum peak at 430 nm. The proportionality in intensity of the membrane color on the optode to varying amounts of Cd(II) suggests its potential applications for screening Cd(II) in aqueous samples by visual colorimetry. The sensor provided a wide concentration range of 3.0 × 10−6–3.4 × 10−4 M of Cd(II) ions with a detection limit of 1.0 × 10−6 M (0.2 μg/mL). The relative standard deviations for eight replicate measurements of 8.0 × 10−6 and 5.0 × 10−5 M Cd(II) were 2.7 and 2.3%, respectively. The response time of the optode was 6 min. The influence of interfering ions on the determination of 1.0 × 10−5 M Cd(II) was studied and the main interferences were removed by extraction method. The sensor was applied to the determination of Cd(II) in water samples.  相似文献   

17.
A PVC membrane electrode for Al3+ based on glyoxal-bis-thiosemicarbazone (GBTC) as an ion carrier was developed. The electrode exhibits a Nernstian slope of 20.1 mV per decade and a linear range of 1.8 × 10−5−1.0 × 10−1 M for Al(NO3)3 with a detection limit of 8.7 × 10−6 M. It has a fast response time of about 10 s and can be used for at least 1 month. The proposed membrane sensor revealed a good selectivity for Al3+ over a wide variety of other metal ions and could be used in the pH range of 2.5–4.5. The text was submitted by the authors in English.  相似文献   

18.
In this paper, a novel membrane triiodide sensor based on a charge-transfer complex of (1,3-diphenyldihydro-1H-imidazole)-4,5-dionedioxime with iodine (CTCI) as a membrane carrier is introduced. The best performance was obtained with a membrane containing 30% polyvinylchloride (PVC), 63% dibutylphthalate (DBP), 5% CTCI, and 2% hexadecyltrimethylammonium bromide (HTAB). The electrode shows a Nernstian behavior (slope of 58.2 ± 0.3) over a very wide triiodide ion concentration range (5.0 × 10−8−1.0 × 10−2 M), and has a low detection limit (4.0 × 10−8 M). The potentiometric response of the sensor is independent of pH of the solution in the pH range 3.0–9.0. The proposed sensor has a very low response time (<12 s) and a good selectivity relative to a wide variety of common inorganic and organic anions, including iodide, bromide, chloride, nitrate, sulfate, thiocyanate, monohydrogen phosphate, and acetate. In fact, the selectivity behavior of the proposed triiodide ion-selective electrode shows great improvements compared to the previously reported electrodes for triiodide ion. The proposed membrane sensor can be used for at least 6 months without any divergence in its potentials. The electrode was successfully applied as an indicator electrode in the titration of triiodide with thiosulfate ion. The text was submitted by the authors in English.  相似文献   

19.
《Analytical letters》2012,45(8):1596-1609
Abstract

An original highly selective and sensitive PVC membrane sensor, working as a Fe(III) ion selective electrode and using 4‐amino‐6‐methyl‐3‐methylmercapto‐1,2,4‐triazin‐5‐one (AMMTO) as an ionophore, has been developed. This cetain sensor demonstrated the following performance; a linear dynamic range between 1.0×10?6 and 1.0×10?1 M with a near Nernstian slope of 19.4±0.5 mV per decade; a detection limit of 6.8×10?7 M; characteristically, the best performance was obtained with a membrane composition of 30% poly(vinyl chloride), 65.5% nitrophenyl octyl ether, 2% sodium tetraphenyl borate and 2.5% AMMTO. Furthermore, the potentiometric response of the developed electrode is independent of the solution pH in the range of 2.2–4.8. The sensor possesses the advantages of short conditioning time, fast response time (<15 s) and, especially, great selectivity towards transition and heavy metal ions and some mono, di‐ and trivalent cations. The electrode can be used for at least 9 weeks without any considerable potential divergence. It was effectively used as an indicator electrode in the potentiometric titration of Fe(III) ions with EDTA and the direct determination of Fe3+ in different water samples.  相似文献   

20.
A disposable screen-printed electrode was designed and evaluated for direct detection of chromium(VI) in batch and flow analysis. The carbon screen-printed electrode was modified with a graphite–epoxy composite. The optimal graphite–epoxy matrix contains 37.5% graphite powder, 12.5% diphenylcarbohydrazide, a selective compound for chromium(VI), and 50% epoxy resin. The principal analytical parameters of the potentiometric response in batch and flow analysis were optimized and calculated. The screen-printed sensor exhibits a response time of 20 ± 1 s. In flow analysis, the analytical frequency of sampling is 70 injections per hour using 0.1 M NaNO3 solution at pH 3 as the carrier, a flow rate of 2.5 mL·min−1, and an injection sample volume of 0.50 mL. The sensor shows potentiometric responses that are very selective for chromium(VI) ions and optimal detection limits in both static mode (2.1 × 10−7 M) and online analysis (9.4 × 10−7 M). The disposable potentiometric sensor was employed to determine toxicity levels of chromium(VI) in mineral, tap, and river waters by flow-injection potentiometry and batch potentiometry. Chromium(VI) determination was also carried out with successful results in leachates from municipal solid waste landfills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号