首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diphosphaazide complex (Mes*NPP)Nb(N[Np]Ar)3 (Mes* = 2,4,6-tri-tert-butylphenyl, Np = neopentyl, Ar = 3,5-Me2C6H3), 1, has previously been reported to lose the P2 unit upon gentle heating, to form (Mes*N)Nb(N[Np]Ar)3, 2. The first-order activation parameters for this process have been estimated here using an Eyring analysis to have the values Delta H(double dagger) = 19.6(2) kcal/mol and Delta S(double dagger) = -14.2(5) eu. The eliminated P2 unit can be transferred to the terminal phosphide complexes P[triple bond]M(N[(i)Pr]Ar)3, 3-M (M = Mo, W), and [P[triple bond]Nb(N[Np]Ar)3](-), 3-Nb, to give the cyclo-P3 complexes (P3)M(N[(i)Pr]Ar)3 and [(P3)Nb(N[Np]Ar)3](-). These reactions represent the formal addition of a P[triple bond]P triple bond across a M[triple bond]P triple bond and are the first efficient transfers of the P2 unit to substrates present in stoichiometric quantities. The related complex (OC)5W(Mes*NPP)Nb(N[Np]Ar)3, 1-W(CO)5, was used to transfer the (P2)W(CO)5 unit in an analogous manner to the substrates 3-M (M = Mo, W, Nb) as well as to [(OC)5WP[triple bond]Nb(N[Np]Ar)3](-). The rate constants for the fragmentation of 1 and 1-W(CO)5 were unchanged in the presence of the terminal phosphide 3-Mo, supporting the hypothesis that molecular P2 and (P2)W(CO)5, respectively, are reactive intermediates. In a reaction related to the combination of P[triple bond]P and M[triple bond]P triple bonds, the phosphaalkyne AdC[triple bond]P (Ad = 1-adamantyl) was observed to react with 3-Mo to generate the cyclo-CP2 complex (AdCP2)Mo(N[(i)Pr]Ar)3. Reactions of the electrophiles Ph3SnCl, Mes*NPCl, and AdC(O)Cl with the anionic, nucleophilic complexes [(OC)5W(P3)Nb(N[Np]Ar)3](-) and [{(OC)5W}2(P3)Nb(N[Np]Ar)3](-) yielded coordinated eta(2)-triphosphirene ligands. The Mes*NPW(CO)5 group of one such product engages in a fluxional ring-migration process, according to NMR spectroscopic data. The structures of (OC)5W(P3)W(N[(i)Pr]Ar)3, [(Et2O)Na][{(OC)5W}2(P3)Nb(N[Np]Ar)3], (AdCP2)Mo(N[(i)Pr]Ar)3, (OC)5W(Ph3SnP3)Nb(N[Np]Ar)3, Mes*NP(W(CO)5)P3Nb(N[Np]Ar)3, and {(OC)5W}2AdC(O)P3Nb(N[Np]Ar)3, as determined by X-ray crystallography, are discussed in detail.  相似文献   

2.
3.
4.
Organometallic complexes containing terminal metal nitrides and phosphides are important synthetic reagents. Laser-ablated group 6 metal atoms react with NF 3, PF 3, and PCl 3 to form the simple lowest energy N[triple bond]MF 3, and P[triple bond]MX 3 products following insertion and halogen transfer, with the exception of P[triple bond]CrF3, which is a higher energy species and is not observed. The E[triple bond]MX3 pnictide metal trihalide molecules are identified from both argon and neon matrix infrared spectra and frequencies calculated by density functional theory and multiconfigurational second-order perturbation theory (CASSCF/CASPT2). These simple terminal nitrides involve strong triple bonds, which range from 2.80 to 2.77 to 2.59 natural bond order for M = W, Mo, and Cr, respectively, as computed by CASSCF/CASPT2, and the M[triple bond]N stretching frequencies also follow this order. The terminal phosphides are weaker with bond orders 2.74, 2.67, and 2.18, respectively, as the more diffuse 3p orbitals are less effective for bonding to the more compact metal valence d orbitals.  相似文献   

5.
Several 1,2-diphenyl- and 1,2,3-triphenyl-3-alkynylcyclopropenes have been prepared in moderate to very good yields by the reaction of acetylenic nucleophiles with the appropriate cyclopropenylium salt. Single crystal X-ray structures of four of the cyclopropenes were obtained. Stereoselective reduction of the triple bond failed in all cases, whereas model compounds lacking the cyclopropene moiety were reduced successfully. A rational for this lack of reactivity is proposed. The solution-phase thermochemistry of the 3-alkynyl-1,2,3-triphenylcyclopropenes was explored, affording 3-alkynyl-1H-indenes in moderate to good yields.  相似文献   

6.
C-H bond activation of terminal alkynes by [Tp'Rh(CNneopentyl)] (Tp' = hydridotris-(3,5-dimethylpyrazolyl)borate) resulted in the formation of terminal C-H bond activation products Tp'Rh(CNneopentyl)(C≡CR)H (R = t-Bu, SiMe(3), hexyl, CF(3), p-MeOC(6)H(4), Ph, and p-CF(3)C(6)H(4)). A combination of kinetic selectivity determined in competition reactions and activation energy for reductive elimination has allowed for the calculation of relative Rh-C(alkynyl) bond strengths. The bond strengths of Rh-C(alkynyl) products are noticeably higher than those of Rh-C(aryl) and Rh-C(alkyl) analogues. The relationship between M-C and C-H bond strengths showed a linear correlation (slope R(M-C/H-C) = 1.32), and follows energy correlations previously established for unsubstituted sp(2) and sp(3) C-H bonds in aliphatic and aromatic hydrocarbons.  相似文献   

7.
A CpPN-based scandium terminal imido complex was isolated, which could induce the intramolecular C-H bond activation of a phenyl group even at room temperature.  相似文献   

8.
The synthesis, isolation and characterisation are reported for a series of terminal aryl/heteroaryl bis(butadiynes) (HC[triple bond]C-C[triple bond]C-Ar-C[triple bond]C-C[triple bond]CH) 4a-e including the X-ray molecular structure of the 2,5-pyridylene derivative 4d; compound 4a and the mono-protected analogue [HC[triple bond]C-C[triple bond]C-Ar-C[triple bond]C-C[triple bond]C-C(OH)Me2] 5a serve as convenient precursors for the synthesis of highly-conjugated oligo(arylenebutadiynylene)s.  相似文献   

9.
Ethynyl isocyanide, H-C triple bond C-N triple bond C (1a), deuteroethynyl isocyanide, D-C triple bond C-N triple bond C (1b), prop-1-ynyl isocyanide, H3C-C triple bond C-N triple bond C (1c), and trideuteroprop-1-ynyl isocyanide, D3C-C triple bond C-N triple bond C (1d) are synthesized by flash vacuum pyrolysis of suitable organometallic precursor molecules (CO)5Cr(CN-CCl triple bond CClH) (5a), (CO)5Cr(CN-CCI=CClD) (5b), (CO)5Cr(CN-CCl=CCl-CH3) (5c) and (CO)5Cr(CN-CCI=CCl-CD3) (5d), respectively. Compounds 5a-d are formed in two steps by radical alkylation of tetraethyl-ammonium pentacarbonyl(cyano)chromate, NEt4[Cr(CO)5(CN)] (2) by 1,1,2,2,-tetrachloroethane (3a), 1,1,2,2-tetrachloro-1,2-dideuteroethane (3b), 1,1,2,2,-tetrachloropropane (3c), and 1,1,2,2-tetrachloro- 1,3,3,3-tetradeutero-propane (3d) yielding [(CO)5Cr(CN-CCl2-CCl2-H)] (4a), [(CO)5Cr(CN-CCl2-CCl2D)] (4b), [(CO)5Cr(CN-CCl2-CCl2-CH3)] (4c), and [(CO)5Cr(CN-CCl2-CCl2-CD3)] (4d). Dehalogenation of 4a-d using zinc in diethylether/acetic acid gives 5a-d, respectively. A multinuclear NMR study revealed the 1H-, 13C- and 15N-NMR data of 1a and 1c. Molecular spectroscopic data of 1c were determined by high resolution infrared spectroscopy. The by-products of the pyrolysis are the E and Z isomers of the halogenated ethenyl isocyanides H(Cl)C=CCl-NC (6a) and H3C(Cl)C=CCl-NC (6c) which have been characterized by IR, MS and NMR spectroscopy.  相似文献   

10.
11.
Preparation and reactivity of a series of bis(phosphine) rhodium(I) alkoxides stabilized by intramolecular olefin coordination are reported. {Rh(PEt3)2[kappa1:eta2-OCRR'(CH2)nCH=CH2]} (n = 1, 2) were prepared via alcoholysis of {Rh(PEt3)2[N(SiMe3)2]} by the corresponding alcohols HOCRR'(CH2)nCH=CH2. The in situ generated {Rh(PEt3)2[kappa1:eta2-OCRR'(CH2)2CH=CH2]} were not stable at ambient temperatures and decomposed in the presence of added PEt3 to afford 2,2-disubstituted-5-methylenetetrahydrofurans and [(PEt3)4Rh-H] in good to high yields. Kinetic and deuterium labeling results support a syn-oxyrhodation pathway via direct olefin insertion into a Rh-O bond, followed by rapid beta-hydride elimination. In comparison, {Rh(PEt3)2[kappa1:eta2-OCRR'CH2CH=CH2]} are isolated as stable crystals, and the Rh-olefin interactions are evidenced by an X-ray structure. Heating of these complexes generated [Rh(PEt3)2(eta2-allyl)] and the corresponding ketones in high yields following an apparent beta-allyl elimination pathway.  相似文献   

12.
New areneacetylenedicarbonylchromium chelate complexes containing the terminal acetylene fragment in the side chain of the arene ligand were synthesized. The rearrangement of these chelates to the previously unknown areneallenedicarbonylchromium chelate complexes was found and studied. It was demonstrated that this rearrangement is in principle reversible. For areneallenedicarbonylchromium chelates, a new example of metallotropic rearrangement was found and both isomers, namely, with the coordination either at the substituted or at the nonsubstituted double bond of the allene ligand, were detected for the first time. The coupled addition of the proton and the nucleophile at the coordinated triple bond afforded the corresponding areneolefin chelates. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1168–1175, June, 1999.  相似文献   

13.
14.
Reaction of an in situ generated phosphinidene complex [PhPW(CO)(5)] with the aromatic azulene and guaiazulene leads to unexpected 1,4-adducts of the seven-membered ring and to C--H bond insertion of the five-membered ring. A DFT analysis suggests that the reaction is initiated by formation of a eta(1)-complex between the phosphinidene and the five-membered ring of the aromatic substrate. Four conformations of this complex were identified. Two convert without barrier to the slightly more stable syn- and anti-1,2-adducts. These undergo pericyclic 1,7-sigmatropic rearrangements with remarkably low barriers to give 1,4-adducts, with an inverted configuration at the phosphorus center. An X-ray crystal structure is presented for one of the 1,4-adducts of guaiazulene. The other two eta(1)-complexes insert with modest barriers into a C--H bond of the five-membered ring.  相似文献   

15.
The reaction between scandium terminal imido complexes and elemental selenium showed an unprecedented C-H bond selenation and the formation of an Sc-Se bond.  相似文献   

16.
1-Diazo-2,4-pentadiyne (6a), along with both monodeuterio isotopomers 6b and 6c, has been synthesized via a route that proceeds through diacetylene, 2,4-pentadiynal, and 2,4-pentadiynal tosylhydrazone. Photolysis of diazo compounds 6a-c (lambda > 444 nm; Ar or N2, 10 K) generates triplet carbenes HC5H (1) and HC5D (1-d), which have been characterized by IR, EPR, and UV/vis spectroscopy. Although many resonance structures contribute to the resonance hybrid for this highly unsaturated carbon-chain molecule, experiment and theory reveal that the structure is best depicted in terms of the dominant resonance contributor of penta-1,4-diyn-3-ylidene (diethynylcarbene, H-C[triple bond]C-:C-C[triple bond]C-H). Theory predicts an axially symmetric (D(infinity h)) structure and a triplet electronic ground state for 1 (CCSD(T)/ANO). Experimental IR frequencies and isotope shifts are in good agreement with computed values. The triplet EPR spectrum of 1 (absolute value(D/hc) = 0.6157 cm(-1), absolute value(E/hc) = 0.0006 cm(-1)) is consistent with an axially symmetric structure, and the Curie law behavior confirms that the triplet state is the ground state. The electronic absorption spectrum of 1 exhibits a weak transition near 400 nm with extensive vibronic coupling. Chemical trapping of triplet HC5H (1) in an O2-doped matrix affords the carbonyl oxide 16 derived exclusively from attack at the central carbon.  相似文献   

17.
The coordination number of the metal in iron(II) beta-diketiminate complexes can be tuned through the size of the alkyl substituents on the ligand backbone.  相似文献   

18.
The addition of mild electrophiles to the anionic terminal Mo-nitride {[(t)BuOCO]Mo[triple bond]N]Na(DMF)}(2) (1) and the synthesis of nitriles via metal-mediated N-atom transfer is reported. The X-ray structure of a pivaloylimido intermediate indicates the presence of a weakly coordinated DMF molecule. Kinetic studies confirm that cyclometalation and DMF dissociation occur prior to nitrile extrusion.  相似文献   

19.
UV irradiation of alkyl-, aryl-, and heteroatom-substituted cyclopropenones results in the loss of carbon monoxide and the formation of quantitative yields of corresponding alkynes. The quantum yield of the photochemical decarbonylation reaction ranges from 20% to 30% for alkyl-substituted cyclopropenones to above 70% for the diphenyl- and dinaphthylcyclorpopenones. Rapid formation (<5 ns) and then a somewhat slower decay (ca. 40 ns) of an intermediate in this reaction was observed by using laser flash photolysis. The DFT calculations allowed us to identify this intermediate as a zwitterionic species formed by a cleavage of one of the carbon-carbon bonds of the cyclopropenone ring. The latter then rapidly loses carbon monoxide to produce the ultimate acetylenic product. Despite their high photoreactivity, cyclopropenones were found to be thermally stable compounds with the exception of hydroxy- and methoxy-substituted cyclopropenones. The latter undergo rapid solvolysis in hydroxylic solvents even at room temperature. The application of this reaction to the in situ generation of the enediyne structure was illustrated by the photochemical preparation of benzannulated enediyne 12.  相似文献   

20.
High yield synthesis of trans-[(Me(3)P)(OC)(3)Fe = BDur] (Dur, "Duryl" = 2,3,4,6-Me(4)C(6)H) is achieved by salt elimination and subsequent liberation of trimethylsilylbromide from K[Fe(CO)(3)(PMe(3))SiMe(3)] and Br(2)BDur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号