首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The half-lives of the 1291.6 keV level in59Co, 145.43 keV level in141Pr and 27.35 keV level in227Ac have been measured using leading edge and zero-crossover timing techniques. The decay curves analysed by moments, Laplace transform and slope methods gave the following half-life values: $$\begin{gathered} T_{\tfrac{1}{2}} (1291.6 keV level in {}^{59}Co) = (0.538 \pm 0.004) ns \hfill \\ T_{\tfrac{1}{2}} (145.43 keV level in {}^{141}\Pr ) = (1.82 \pm 0.04) ns \hfill \\ T_{\tfrac{1}{2}} (27.35 keV level in {}^{227}Ac) = (41.0 \pm 1.1) ns. \hfill \\ \end{gathered} $$ From the measured half-lives, the reduced transition probabilitiesB(M1)↓,B(E2)↓ for gamma transitions de-exciting the above mentioned levels in59Co and141Pr are determined and compared with single particle, intermediate coupling and Sorensen estimates. In227Ac, absolute transition probability for the 27.35 keV transition is determined and compared with single particle and Nilsson estimates.  相似文献   

2.
TheL-subshell conversion for 77 keV transition andK,L 1,L 2-shell conversion for 191 keV transition in197Au, as well asK-shell conversion transition of 158 keV in199Hg were measured by means of Π√2-iron free electron spectrometer. Relative gamma-ray intensities have been determined by Ge(Li) spectrometer. From these measurements the α K conversion coefficient value has been deduced for 191 keV transition as αK(191 keV)=0.86±0.03. This value shows that the spin of the level at 268 keV in197Au is 3/2+. For the penetration parameter (λ) and intensity ratio \(\left( {\delta ^2 = \frac{{\left\langle {E2} \right\rangle ^2 }}{{\left\langle {MI} \right\rangle ^2 }}} \right)\) the following values are obtained: $$\begin{gathered} \lambda = 3.4 \pm _{1.5}^{1.9} \delta ^2 = 0.11 \pm 0.03for 77 keV transition \hfill \\ \lambda = 3.2 \pm _{0.6}^{0.8} \delta ^2 = 0.17 \pm 0.04for 191 keV transition. \hfill \\ \end{gathered} $$ The agreement of these results with the predictions of De Shalit model is discussed.  相似文献   

3.
Neutron-deficient osmium and rhenium isotopes were produced by bombarding an enriched144Sm target with beams of27Al and28Si. Previously reported decay data concerning168,169,170Os were confirmed. Three newα groups, observed in the144Sm+27Al reaction, were assigned to the decay of166,167,168Re based on excitation functions,α-energy systematics and theoretical half-life predictions. Their decay properties are: $$\begin{gathered} {}^{166}\operatorname{Re} , E_\alpha = 5,372 (10) keV, T_{1/2} = 2.8 (3) s; \hfill \\ {}^{167}\operatorname{Re} , E_\alpha = 5,136 (8) keV, T_{1/2} = 6.1 (2) s and \hfill \\ {}^{168}\operatorname{Re} , E_\alpha = 4,894 (10) keV, T_{1/2} = 6.9 (8) s. \hfill \\ \end{gathered}$$ It is proposed that twoα groups, observed in the144Sm+28Si reaction, originate from isomeric states in168,169Re. Our measured data for the isomeric states are: $$\begin{gathered} {}^{168m}\operatorname{Re} , E_\alpha = 5,250 (10) keV, T_{1/2} = 6.6 (15) s and \hfill \\ {}^{169m}\operatorname{Re} , E_\alpha = 5,050 (10) keV, T_{1/2} = 12.9 (11) s. \hfill \\ \end{gathered} $$   相似文献   

4.
Integral perturbed angular correlation technique has been used to measure the internal hyperfine magnetic fields at Hf nuclei in Fe, Co and Ni matrices. These represent a consistent set of measurements with diffused sources. The 9+/2 (208 keV) 9?/2 (113 keV) 7?/2 cascade in the decay of177Lu→177Hf was used for measurements. The results obtained are: $$\begin{gathered} H_{Fe}^{Hf} = - 266 \pm 47 kG, \hfill \\ H_{Co}^{Hf} = - 116 \pm 18 kG, \hfill \\ H_{Ni}^{Hf} = - 118 \pm 26 kG. \hfill \\ \end{gathered} $$ These measurements are compared with previous results and discussed in terms of methods of source preparation.  相似文献   

5.
Moessbauer spectra with different sets of parameters were calculated. A fit with a superposition of Lorentzians to these theoretical spectra showed, that systematic errors must be expected if the hyperfine structure of the spectrum is only partly resolved. Correction factors for some simple cases are given. Experiments to test the calculations were performed with133Cs (81 keV transition),165Ho (94.7 keV transition) and178Hf (93 keV transition). In all cases fits using the transmission integral and superpositions of Lorentzians showed the expected trends. We get the following results: $$\begin{gathered} ^{133} Cs:\frac{{g_{ex} }}{{g_{gr} }} = 1.90\left( 4 \right) \hfill \\ ^{165} Ho:\tau \left( {94.7keVlevel} \right) = 32\left( 1 \right)ps \hfill \\ \frac{{g_{ex} }}{{g_{gr} }} = 0.77\left( 3 \right) \hfill \\ ^{178} Hf:|H_{eff} \left( {4K,in iron} \right)| = 633\left( {40} \right)KG \hfill \\ |H_{eff} \left( {77K,in iron} \right)| = 630\left( {41} \right)KG. \hfill \\ \end{gathered}$$   相似文献   

6.
The hyperfine structure and the Stark effect shift of the 4d5s5p z 2 F 5/2 states in the Y I spectrum were investigated by level-crossing technique. Between the Zeeman effect region and the Paschen-Back region of hyperfine structure states some of the levels cross. The resonance radiation of these coherently excited levels show an interference effect of the scattering amplitudes in the crossing region. The level-crossing signals give information about hfs splitting and lifetime of the excited states under investigation. The magnetic hfs splitting factorsA of the 4d5s5p z 2 F 5/2, 7/2 states and their lifetimes were deduced. $$\begin{gathered} |A (z^2 F_{5/2} )| = (23.8 \pm 0.04) MHz \frac{{g_J }}{{0.854}} \hfill \\ |A (z^2 F_{7/2} )| = (84.08 \pm 0.01) MHz \frac{{g_J }}{{1.148}} \hfill \\ \tau (z^2 F_{5/2} ) = (46 \pm 3) 10^{ - 9} s \frac{{0.854}}{{g_J }} \hfill \\ \tau (z^2 F_{7/2} ) = (44 \pm 4) 10^{ - 9} s \frac{{1.148}}{{g_J }}. \hfill \\ \end{gathered} $$ With an electric field parallel to the magnetic field a shift of the level-crossing signals of the 4d5s5p z 2 F 5/2, 7/2 states was observed, and the Stark constants β were deduced. $$\begin{gathered} |\beta (z^2 F_{5/2} )| = (0.0020 \pm 0.0002) MHz/(kV/cm)^2 \hfill \\ |\beta (z^2 F_{7/2} )| = (0.0025 \pm 0.0015) MHz/(kV/cm)^2 . \hfill \\ \end{gathered} $$   相似文献   

7.
Editorial     
The production of charmed mesons ,D ± , andD is studied in a sample of 478,000 hadronicZ decays. The production rates are measured to be
  相似文献   

8.
The contribution to the sixth-order muon anomaly from second-order electron vacuum polarization is determined analytically to orderm e/m μ. The result, including the contributions from graphs containing proper and improper fourth-order electron vacuum polarization subgraphs, is $$\begin{gathered} \left( {\frac{\alpha }{\pi }} \right)^3 \left\{ {\frac{2}{9}\log ^2 } \right.\frac{{m_\mu }}{{m_e }} + \left[ {\frac{{31}}{{27}}} \right. + \frac{{\pi ^2 }}{9} - \frac{2}{3}\pi ^2 \log 2 \hfill \\ \left. { + \zeta \left( 3 \right)} \right]\log \frac{{m_\mu }}{{m_e }} + \left[ {\frac{{1075}}{{216}}} \right. - \frac{{25}}{{18}}\pi ^2 + \frac{{5\pi ^2 }}{3}\log 2 \hfill \\ \left. { - 3\zeta \left( 3 \right) + \frac{{11}}{{216}}\pi ^4 - \frac{2}{9}\pi ^2 \log ^2 2 - \frac{1}{9}log^4 2 - \frac{8}{3}a_4 } \right] \hfill \\ + \left[ {\frac{{3199}}{{1080}}\pi ^2 - \frac{{16}}{9}\pi ^2 \log 2 - \frac{{13}}{8}\pi ^3 } \right]\left. {\frac{{m_e }}{{m_\mu }}} \right\} \hfill \\ \end{gathered} $$ . To obtain the total sixth-order contribution toa μ?a e, one must add the light-by-light contribution to the above expression.  相似文献   

9.
The60Co decay has been reinvestigated using an electromagneticβ-spectrometer and a Ge(Li)γ-spectrometer. A new weakβ ?-transition of characterΔJ=3, no parity change between the 5+ groundstate of60Co and the second excited 2+ level atE=2.155 MeV in60Ni could be established. The endpoint energies and intensities of the threeβ ?-transitions are: $$\begin{gathered} E_{\beta \bar 1\max } = \left( {1.492 \pm 0.020} \right)MeV,I_{\beta \bar 1} = \left( {0.08 \pm 0.02} \right)\% ; \hfill \\ E_{\beta \bar 2\max } = \left( {0.670 \pm 0.020} \right)MeV,I_{\beta \bar 2} = \left( {0.18 \pm 0.03} \right)\% ; \hfill \\ E_{\beta \bar 3\max } = \left( {0.315 \pm 0.004} \right)MeV,I_{\beta \bar 3} = \left( {99.74 \pm 0.05} \right)\% ; \hfill \\ \end{gathered} $$ . The intensity ratio of the stopover and crossoverγ-transitions deexciting the 2.155 MeV level has been determined to be ≧120. Some conclusions for the theory are discussed.  相似文献   

10.
Excited states in127, 128Xe were populated in the reaction9Be+122Sn atE lab=38 MeV. The de-excitation of the isomeric states 7/2+ in127Xe and 8? in128Xe was studied using angular distribution and TDPAD methods on molten122Sn targets. The results are $$\begin{gathered} T_{1/2} (7/2^ + ) = 37 \pm 1 ns, g(7/2^ + ) = + 0.241 \pm 0.009 \hfill \\ T_{1/2} (8^ - ) = 83 \pm 2 ns, g(8^ - ) = - 0.036 \pm 0.009. \hfill \\ \end{gathered}$$ The experimentalg-factors suggest the main configurationsvg 7/2 andvh 11/2 g 7/2 for the isomeric states. Detailed analysis of the combined information fromg-factors and transition rates set stringent limits on the admixtures of the wave functions. The quasirotational bands built on the two-quasiparticle 6? and 10+ states are extended to higher spins, (14?) and (16+), respectively, and their structures are analyzed within the framework of the Interacting Boson Model.  相似文献   

11.
Theg-factor of the 181 keV-level of99Tc has been redetermined by the spin rotation method. Measurements with polycrystalline sources of Tc in Fe, Co, and Ni yielded values of the hyperfine fields at the Tc nucleus. $$\begin{gathered} g = + 1.310(25) \hfill \\ H_{hf} (Tc{\mathbf{ }}in{\mathbf{ }}Fe) = ( - )290(15)kOe \hfill \\ H_{hf} (Tc{\mathbf{ }}in{\mathbf{ }}Co) = ( - )170(5)kOe \hfill \\ H_{hf} (Tc{\mathbf{ }}in{\mathbf{ }}Ni) = - 47.8(1.5)kOe. \hfill \\ \end{gathered} $$   相似文献   

12.
The paramagnetic resonance of Nd3+ in Y2O3 has been measured at 4.2°K and 9.25 kMe/s. The values of theg-tensors are: ions onC 3i -sites:g =2.434±0.007;g =0.702±0.005; ions onC 2-sites:g x =4.395±0.012;g y =0.433±0.009;g z =1.648±0.006. Further measurements have been performed on La2O3 crystals doped with Ce3+, Dy3+, and Er3+; the results are (C 3v -sites only): .   相似文献   

13.
14.
Feynman diagrammatic technique was used for the calculation of Hartree-Fock and correlation energies, relativistic corrections, dipole matrix element. The whole energy of atomic system was defined as a polen-electron Green function. Breit operator was used for the calculation of relativistic corrections. The Feynman diagrammatic technique was developed for 〈HB>. Analytical expressions for the contributions from diagrams were received. The calculations were carried out for the terms of such configurations as 1s2 2sn1 2pn2 (2 ≧n1≧ 0, 6≧ n2 ≧ 0). Numerical results are presented for the energies of the terms in the form $$E = E_0 Z^2 + \Delta {\rm E}_2 + \frac{1}{Z}\Delta {\rm E}_3 + \frac{{\alpha ^2 }}{4}(E_0^r + \Delta {\rm E}_1^r Z^3 )$$ and for fine structure of the terms in the form $$\begin{gathered} \left\langle {1s^2 2s^{n_1 } 2p^{n_2 } LSJ|H_B |1s^2 2s^{n_1 \prime } 2p^{n_2 \prime } L\prime S\prime J} \right\rangle = \hfill \\ = ( - 1)^{\alpha + S\prime + J} \left\{ {\begin{array}{*{20}c} {L S J} \\ {S\prime L\prime 1} \\ \end{array} } \right\}\frac{{\alpha ^2 }}{4}(Z - A)^3 [E^{(0)} (Z - B) + \varepsilon _{co} ] + \hfill \\ + ( - 1)^{L + S\prime + J} \left\{ {\begin{array}{*{20}c} {L S J} \\ {S\prime L\prime 2} \\ \end{array} } \right\}\frac{{\alpha ^2 }}{4}(Z - A)^3 \varepsilon _{cc} . \hfill \\ \end{gathered} $$ Dipole matrix elements are necessary for calculations of oscillator strengths and transition probabilities. For dipole matrix elements two members of expansion by 1/Z have been obtained. Numerical results were presented in the form P(a,a′) = a/Z(1+τ/Z).  相似文献   

15.
Using algebraic methods, we find the three-loop relation between the bare and physical couplings of one-flavourD-dimensional QED, in terms of Γ functions and a singleF 32 series, whose expansion nearD=4 is obtained, by wreath-product transformations, to the order required for five-loop calculations. Taking the limitD→4, we find that the \(\overline {MS} \) coupling \(\bar \alpha (\mu )\) satisfies the boundary condition $$\begin{gathered} \frac{{\bar \alpha (m)}}{\pi } = \frac{\alpha }{\pi } + \frac{{15}}{{16}}\frac{{\alpha ^3 }}{{\pi ^3 }} + \left\{ {\frac{{11}}{{96}}\zeta (3) - \frac{1}{3}\pi ^2 \log 2} \right. \hfill \\ \left. { + \frac{{23}}{{72}}\pi ^2 - \frac{{4867}}{{5184}}} \right\}\frac{{\alpha ^4 }}{{\pi ^4 }} + \mathcal{O}(\alpha ^5 ), \hfill \\ \end{gathered} $$ wherem is the physical lepton mass and α is the physical fine structure constant. Combining this new result for the finite part of three-loop on-shell charge renormalization with the recently revised four-loop term in the \(\overline {MS} \) β-function, we obtain $$\begin{gathered} \Lambda _{QED}^{\overline {MS} } \approx \frac{{me^{3\pi /2\alpha } }}{{(3\pi /\alpha )^{9/8} }}\left( {1 - \frac{{175}}{{64}}\frac{\alpha }{\pi } + \left\{ { - \frac{{63}}{{64}}\zeta (3)} \right.} \right. \hfill \\ \left. { + \frac{1}{2}\pi ^2 \log 2 - \frac{{23}}{{48}}\pi ^2 + \frac{{492473}}{{73728}}} \right\}\left. {\frac{{\alpha ^2 }}{{\pi ^2 }}} \right), \hfill \\ \end{gathered} $$ at the four-loop level of one-flavour QED.  相似文献   

16.
Moments of the hadronic invariant mass and of the lepton energy spectra in semileptonic B decays have been determined with the data recorded by the DELPHI detector at LEP. From measurements of the inclusive b-hadron semileptonic decays, and imposing constraints from other measurements on b- and c-quark masses, the first three moments of the lepton energy distribution and of the hadronic mass distribution, have been used to determine parameters which enter into the extraction of |Vcb| from the measurement of the inclusive b-hadron semileptonic decay width. The values obtained in the kinetic scheme are: and include corrections at order 1/mb3. Using these results, and present measurements of the inclusive semileptonic decay partial width of b-hadrons at LEP, an accurate determination of |Vcb| is obtained: Received: 26 April 2005, Revised: 16 September 2005, Published online: 16 November 2005  相似文献   

17.
An electric molecular beam resonance spectrometer has been used to measure simultaneously the Zeeman- and Stark-effect splitting of the hyperfine structure of23Na19F. Electric four pole lenses served as focusing and refocusing fields of the spectrometer. A homogenous magnetic field (Zeeman field) was superimposed to the electric field (Stark field) in the transition region of the apparatus. The observed (Δm J=±1)-transitions were induced electrically. Completely resolved spectra of NaF in theJ=1 rotational state have been measured in several vibrational states. The obtained quantities are: The electric dipolmomentμ el of the molecule forv=0, 1 and 2, the rotational magnetic dipolmomentμ J forv=0, 1, the difference of the magnetic shielding (σ -σ ) by the electrons of both nuclei as well as the difference of the molecular susceptibility (ξ -ξ ), the spin rotational constantsc F andc Na, the scalar and the tensor part of the molecular spin-spin interaction, the quadrupol interactione q Q forv=0, 1 and 2. The numerical values are
$$\begin{gathered} \mu _{\mathfrak{e}1} = 8,152(6) deb \hfill \\ \frac{{\mu _{\mathfrak{e}1} (v = 1)}}{{\mu _{\mathfrak{e}1} (v = 0)}} = 1,007985 (7) \hfill \\ \frac{{\mu _{\mathfrak{e}1} (v = 2)}}{{\mu _{\mathfrak{e}1} (v = 1)}} = 1,00798 (5) \hfill \\ \mu _J = - 2,89(3)10^{ - 6} \mu _B \hfill \\ \frac{{\mu _J (v = 0)}}{{\mu _J (v = 1)}} = 1,020 (13) \hfill \\ (\sigma _ \bot - \sigma _\parallel )_{Na} = - 51(12) \cdot 10^{ - 5} \hfill \\ (\sigma _ \bot - \sigma _\parallel )_F = - 51(12) \cdot 10^{ - 6} \hfill \\ (\xi _ \bot - \xi _\parallel ) = - 1,59(120)10^{ - 30} erg/Gau\beta ^2 \hfill \\ {}^CNa/^h = 1,7 (2)kHz \hfill \\ {}^CF/^h = 2,2 (2)kHz \hfill \\ {}^dT/^h = 3,7 (2)kHz \hfill \\ {}^dS/^h = 0,2 (2)kHz \hfill \\ eq Q/h = - 8,4393 (19)MHz \hfill \\ \frac{{eq Q(v = 0)}}{{eq Q(v = 1)}} = 1,0134 (2) \hfill \\ \frac{{eq Q(v = 1)}}{{eq Q(v = 2)}} = 1,0135 (2) \hfill \\ \end{gathered} $$  相似文献   

18.
All experimental data on leptonic decays of Baryons available after the Kiev Conference on High Energy Physics (Sept. 1970) are used to fit the parameters of the Cabibbo theory. Especially new results on σ? and Λ leptonic decays and the values of the Σ± lifetime are included. The data are consistent with the one angle Cabibbo theory. The results for the three parameters are: $$\begin{gathered} \theta = 0.239 \pm 0.005 \hfill \\ g_1^F = 0.451 \pm 0.019 \hfill \\ g_1^D = 0.777 \pm 0.021. \hfill \\ \end{gathered} $$   相似文献   

19.
The forward-backward asymmetry of has been measured using approximately 2.15 million hadronicZ 0 decays collected at the LEP e+e collider with the OPAL detector. A lifetime tag technique was used to select an enriched event sample. The measurement of the asymmetry was then performed using a jet charge algorithm to determine the direction of the primary quark. Values of:
  相似文献   

20.
The essential spectrum of singular matrix differential operator determined by the operator matrix
is studied. It is proven that the essential spectrum of any self-adjoint operator associated with this expression consists of two branches. One of these branches (called regularity spectrum) can be obtained by approximating the operator by regular operators (with coefficients which are bounded near the origin), the second branch (called singularity spectrum) appears due to singularity of the coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号