首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Unprotected exposure of skin to solar ultraviolet radiation (UVR) may damage the DNA of skin cells and can lead to skin cancer. Sunscreens are topical formulations used to protect skin against UVR. The active ingredients of sunscreens are UV filters that absorb, scatter, and/or reflect UVR. Preventing the formation of free radicals and repairing DNA damages, natural antioxidants are also added to sunscreens as a second fold of protection against UVR. Antioxidants can help stabilise these formulations during the manufacturing process and upon application on skin. However, UV filters and antioxidants are both susceptible to degradation upon exposure to sunlight and oxygen. Additionally, due to their poor water solubility, natural antioxidants are challenging to formulate and exhibit limited penetration and bioavailability in the site of action (i.e., deeper skin layers). Cyclodextrins (CDs) are cyclic oligosaccharides that are capable of forming inclusion complexes with poorly soluble drugs, such as antioxidants. In this review, we discuss the use of CDs inclusion complexes to enhance the aqueous solubility of antioxidants and chemical UV filters and provide a protective shield against degradative factors. The role of CDs in providing a controlled drug release profile from sunscreens is also discussed. Finally, incorporating CDs inclusion complexes into sunscreens has the potential to increase their efficiency and hence improve their skin cancer prevention.  相似文献   

2.
A Review of Sunscreen Safety and Efficacy   总被引:9,自引:0,他引:9  
The use of sunscreen products has been advocated by many health care practitioners as a means to reduce skin damage produced by ultraviolet radiation (UVR) from sunlight. There is a need to better understand the efficacy and safety of sunscreen products given this ongoing campaign encouraging their use. The approach used to establish sunscreen efficacy, sun protection factor (SPF), is a useful assessment of primarily UVB (290–320 nm) filters. The SPF test, however, does not adequately assess the complete photoprotective profile of sunscreens specifically against long wavelength UVAI (340–400 nm). Moreover, to date, there is no singular, agreed upon method for evaluating UVA efficacy despite the immediate and seemingly urgent consumer need to develop sunscreen products that provide broad-spectrum UVB and UVA photoprotection. With regard to the safety of UVB and UVA filters, the current list of commonly used organic and inorganic sunscreens has favorable toxico-logical profiles based on acute, subchronic and chronic animal or human studies. Further, in most studies, sunscreens have been shown to prevent the damaging effects of UVR exposure. Thus, based on this review of currently available data, it is concluded that sunscreen ingredients or products do not pose a human health concern. Further, the regular use of appropriate broad-spectrum sunscreen products could have a significant and favorable impact on public health as part of an overall strategy to reduce UVR exposure.  相似文献   

3.
Sunscreens were originally designed to include mainly UVB-filters. Because of the deeper penetration of UVA light, causing photoaging and DNA damage, there has been a shift towards broad spectrum sunscreens. These broad spectrum sunscreens now include both UVA- and UVB-filters and other ingredients which possess antioxidant activity. Although sunscreens are regulated in most countries, photostability testing is not mandatory. Because of the ability of sunscreen ingredients to absorb UV-light and the complexity of most of these formulations, which may include more than one UV-filter, antioxidants and other formulation excipients, it is important that their photostability in combination is determined.  相似文献   

4.
The phototoxic and photoallergic effects of the once popular UV sunscreen p-aminobanzoic acid are related, in part, to its ability to sensitize the formation of singlet oxygen as well as other reactive oxygen species. In this work we demonstrate that the sunscreen-photoinduced inactivation of a model protein, horseradish peroxidase, is reduced by approximately a factor of three when the sunscreen is encaspsulated in zeolite sodium Y. These results provide evidence that using the technology of zeolite encapsulation to prepare a supramolecular sunscreen that minimizes the skin contact of active ingredients may reduce the adverse effects of "naked" sunscreens on biological systems. These radiation-induced effects, unfortunately, frequently accompany the desirable UV-screening role of these products. These results provide an important benchmark for the use of zeolite encapsulation as a means of improving the safety of UV sunscreens for topical application.  相似文献   

5.
Fluorescence and absorption spectra of hydrophobic sunscreens, weakly fluorescent octyl methoxycinnamate, moderately fluorescent octyl salicylate and highly fluorescent 2-ethylhexyl-4-(dimethylamino)benzoate (padimate O) adsorbed to dielectric microspheres in aqueous suspension, have been compared with spectra in organic solution. The fluorescence of adsorbed salicylate and padimate is enhanced compared with fluorescence in methanol: about a factor of 6 and 30 in terms of fluorescence yield per molecule of salicylate and padimate, respectively. Cinnamate, which has a low fluorescence yield, does not show a comparable fluorescence enhancement. The fluorescence amplification is independent of sphere diameter from 30 to 1500 nm, at least for salicylate. The enhancement, as well as the location of absorption spectral peaks, is consistent with a low-dielectric constant environment of the molecules, in spite of the presumed location near the interface between polystyrene (epsilon = 2.4-3.8) and water (epsilon = 78). The adsorbed state of these sunscreens represents a proposed improved in vitro model for the environment of sunscreens in vivo, as well as a general model for chromophores in heterogeneous environments.  相似文献   

6.
One essential reason for skin ageing is the formation of free radicals by excessive or unprotected sun exposure. Recently, free radical generation in skin has been shown to appear not only after irradiation in the UV wavelength range but also in the infrared (IR) spectral range. Sunscreens are known to protect against radicals generated by UV radiation; however, no data exist for those generated by IR radiation. This paper has investigated four different, commercially available sunscreens and one COLIPA standard with regard to radical formation in the skin after IR irradiation, using electron paramagnetic resonance spectroscopy. The use of sunscreens has led to reduced amounts of radicals compared to untreated skin. Furthermore, absorption and scattering properties and the radical protection factor of the formulations were determined to investigate their influence on the radical protection of the skin. None of these formulations contained an optical absorber in the IR range. The protection efficiency of the sunscreens was shown as being induced by the high scattering properties of the sunscreens, as well as the antioxidants contained in the formulations.  相似文献   

7.
Current techniques being used for sunscreen analysis are incapable of direct determination of the active ingredients in sunscreen formulations. Therefore, the development of methodologies for rapid in situ analysis of sunscreens is desirable. This paper describes the application of ultraviolet resonance Raman spectroscopy (UVRRS) to the direct in situ analysis of sunscreen formulations. High-quality UV resonance Raman spectra were obtained for five sunscreen active ingredients (AIs), mixtures of the AIs and real sunscreen formulation samples. The spectra from the sunscreen formulations gave distinct spectral signatures indicative of the sunscreen AIs in each sample, with essentially no interference from the complex sunscreen matrix. Also, despite the fact that many of the AIs are fluorescent, no fluorescence interferences in the resonance Raman spectra were observed. Excitation wavelength-dependent studies throughout the 244-275 nm region demonstrate that the best discrimination of the AIs was achieved at an excitation wavelength of 244 nm. Thus, by tuning the excitation wavelength within the absorption bands of the AIs, complete identification of these analytes can be achieved in situ without any sample pretreatment or separation. The limit of detection found for a common AI in situ with this technique is 0.23% (w/w), the limit of quantitation is 0.78% (w/w), while the dynamic range is between 0.8% and 50% (w/w). The technique is fast, robust, lacks any major interference, and can be adapted for routine online quality control.  相似文献   

8.
We have carried out ex vivo studies to examine the feasibility of using fluorescence spectroscopy as an in vivo quantitative technique to assess sunscreen substantivity in terms of skin surface thickness and/or photoprotection. We found that the majority of sunscreens produced insufficient natural fluorescence and so we have attempted to increase the fluorescent signal by adding various fluorescing agents to the sunscreens. However, none of these substances is ideal; either they do not bind sufficiently strongly to sunscreen products, or their fluorescence is quenched by the active ingredients contained within sunscreens. The feasibility of using fluorescence spectroscopy for in vivo quantitative assessments of sunscreen substantivity therefore remains unproved and is dependent on a suitable fluorescent agent being found. Such an agent would have to be non-toxic, mix readily with sunscreens and be excited by visible wavelengths.  相似文献   

9.
《印度化学会志》2023,100(2):100858
Excessive exposure of UV radiation from the sunlight to human skin is dangerous and causes various skin disorders including skin cancer. Dermatologists worldwide recommend use of skin creams/lotions containing UV-filters/sunscreens for protection from such harmful effects. There is continuous evolution and development of new organic, inorganic and hybrid sunscreens which are being used in such skin care preparations. In the recent past it has been seen that some of these materials are not stable to UV light and the sun protection offered by them decreases rapidly with time. Therefore, most of the formulators now prefer photostable sunscreens or the formulations are designed in such a way that they provide inherent photostability.In this review, we have covered the chemistry of synthesis of different organic sunscreens, issues related to photostability of some of them, and different approaches used to enhance their photostability.  相似文献   

10.
There remains an unmet need for skin tissue-based assays for the measurement of the UVA protection and efficacy of sunscreens. Here we describe development of a novel electron paramagnetic resonance assay that uses the photogeneration of reactive melanin radical as a measure of UV light penetration to melanocytes in situ in skin. We have used areas of focal melanocytic hyperplasia in the skin of Monodelphis domestica to model the human nevus. We show that we are able to use this assay to determine the monochromatic protection factors (mPF) of research and commercial sunscreens at specific narrow wavebands of UVB, UVA and blue visible light. Both commercial sunscreens, a sun protection factor (SPF) 4 and an SPF 30 product, had mPFs in the UVB range that correlated well with their claimed SPF. However, their mPF in the UVA ranges were only about one-third of claimed SPF. This technique can be used to design and assay sunscreens with optimally balanced UVA and UVB protection.  相似文献   

11.
Sunscreens applied to the skin are retained primarily in the stratum corneum, where they adsorb and act as a barrier preventing UV penetration to deeper layers. Photophysical properties of sunscreens have traditionally been studied either in solvents, which are very different from skin, or in skin or complex artificial skin systems, which are difficult to handle. The purpose of this study was to determine whether polystyrene nanospheres could serve as an improvement over solvents for evaluation of the photophysical properties of sunscreens without the presence of autofluorescence from and interactions with specific skin biomolecules. We used HaCat cells and excised skin for this comparative study with nanospheres. Fluorescence spectral properties of common hydrophobic sunscreens octyl salicylate, padimate O (2-ethylhexyl-4-dimethylaminobenzoate) and octyl methoxycinnamate adsorbed to 220 nm polystyrene spheres are similar to those of sunscreens adsorbed to HaCat cells and excised skin. Specifically, similarity in the emission peaks and their approximate positions, excitation peak positions and a measurable reduction in scattering upon sunscreen addition suggest that polystyrene nanospheres constitute a useful system to evaluate the photophysical properties of topical sunscreens and may serve as a model system for high-throughput evaluation of potential sunscreens. An unexpected result of this comparative study was the observation of an increase in a specific skin component emission caused by addition of padimate O.  相似文献   

12.
To guarantee feed quality and safety the development and improvement of analytical methods for feed authentication and detection of contaminants is fundamental. Near infrared reflectance microscopy (NIRM) has been investigated as an alternative method to contribute to control systems for feed materials. The major task is the need to build NIRM reference spectral libraries that must represent the variability in feed ingredients. The aim of the present work was to evaluate the performance of a NIRM reference spectral library on animal feed, with external samples of animal feed ingredients and possible contaminants such as processed animal proteins, and in particular to assess its ability to identify ingredients in mixtures. Three external sample sets were used: (A) artificial mixtures, (B) synthetic mixtures and (C) synthetic binary mixtures. The prediction and repeatability results for set A, in which the spectra are from pure ingredients, were very good for both animal and vegetable ingredients and confirm that the spectral library is very good at identifying spectra from pure ingredients. For sets B and C, in which the spectra were measured on mixtures, the prediction results were very disappointing compared with the artificial samples. This means that a strategy that tries to match the spectra taken from a mixture with those of pure ingredients is unlikely to meet with much success. It is possible that an interpolation between pure ingredients for suitably chosen spectral ranges may provide a way to extend this system to mixtures, including mixtures of several ingredients.  相似文献   

13.
Novel sunscreens are required providing active protection in the UVA and UVB regions. On the other hand, there is an increasing concern about the photosafety of UV filters, as some of them are not sufficiently photostable. Avobenzone is one of the most frequently employed sunscreen ingredients, but it has been reported to partially decompose after irradiation. In the present work, photophysical and photochemical studies on a methylated avobenzone-derivative have shown that the diketo form is responsible for photodegradation. A transient absorption was observed at 380 nm after laser flash photolysis excitation at 308 nm. It was assigned to the triplet excited state of the diketo form, as inferred from quenching by oxygen and β-carotene. This transient also interacted with key building blocks of biomolecules by triplet–triplet energy transfer (in the case of thymidine) or electron transfer processes (for 2'-deoxyguanosine, tryptophan and tyrosine). Irradiation of the avobenzone derivative in the presence of a triazine UV-B filter (E-35852) diminished the undesirable effects of the compound by an efficient quenching of the triplet excited state. Thus, sunscreen formulations including triplet quenchers could provide effective protection from the potential phototoxic and photoallergic effects derived from poor photostability of avobenzone.  相似文献   

14.
The protective power of sun creams is usually defined by the sun protection factor (SPF) which is derived from the creams absorption spectrum between 290 and 400 nm. The SPF is actually calculated from spectral data by applying a mathematical equation, but testing this equation on both real and hypothetical creams demonstrated that the SPF does not take into account the true absorption profile of the cream, especially in the UVA range (between 320 and 400 nm). A new index (the sun protection potential, SPP) is proposed based on the percentage of light absorbed.  相似文献   

15.
Three observations have been made pertinent to atomic absorption spectroscopy. With a flame atomizer, it is shown that (1) the absorption profile is controlled by metal oxide formation, (2) organo-metallic compounds give rise to greater absorption than metal salts, and (3) absorption by hydroxyl bands affects the apparent metal absorption in certain spectral regions.  相似文献   

16.
The phenomenon of concentration dependent red shift, often observed in synchronous fluorescence spectra (SFS) of monofluorophoric as well as multifluorophoric systems at high chromophore concentrations, is known to have good analytical advantages. This was previously understood in terms of large inner filter effect (IFE) through the introduction of a derived absorption spectral profile that closely corresponds to the SFS profile. Using representative monofluorophoric and multifluorophoric systems, it is now explained how the SF spectral maximum changes with concentration of the fluorophore. For dilute solutions of monofluorophores the maximum is unchanged as expected. It is shown here that the onset of red shift of SFS maximum of both the mono as well as the multifluorophoric systems must occur at the derived absorption spectral parameter value of 0.32 that corresponds to the absorbance value of 0.87. This value is unique irrespective of the nature of the fluorophore under study. For monofluorophoric systems, the wavelength of derived absorption spectral maximum and the wavelength of synchronous fluorescence spectral maximum closely correspond with each other in the entire concentration range. In contrast, for multifluorophoric systems like diesel and aqueous humic acid, large deviations were noted that could be explained as to be due to the presence of non-fluorescing chromophores in the system. This work bridges the entire fluorophore concentration range over which the red shift of SFS maximum sets in; and in the process it establishes the importance of the derived absorption spectral parameter in understanding the phenomenon of concentration dependent red shift of SFS maximum.  相似文献   

17.
It is now well documented that chronic UVA exposure induces damage to human skin. Therefore, modern sunscreens should not only provide protection from both UVB and UVA radiation but also maintain this protection during the entire period of exposure to the sun. UVA filters, however, are rare and not sufficiently photostable. We investigated the effect of the introduction of a new UV filter, bis-ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S), in oil in water sunscreen formulations on the photostability of butyl methoxydibenzoylmethane (Avobenzone [AVB]) after irradiation with an optically filtered Xenon arc source (UV irradiance adjusted at 1 mean effective dose [MED]/min). With spectrophotometrical methods to assess the sun protection factor (SPF) and UVA ratio and chromatographical methods to determine the amount of UV filters recovered after irradiation we showed that Tinosorb S prevented the photodegradation of AVB in a concentration-dependent way, leading to a sustained SPF and UVA ratio even after irradiation with doses of up to 30 MED. Since AVB was shown to destabilize ethylhexyl methoxycinnamate (EHM) we tested the effect of Tinosorb S in sunscreens containing this UV filter combination. Here too Tinosorb S showed photoprotective properties toward both UV filters. Thus, Tinosorb S can be used successfully to improve the photostability and efficiency of sunscreens containing AVB and EHM.  相似文献   

18.
Photophysical properties of sunscreens are commonly studied in solvent media, which do not mimic the skin, or in complex artificial skin systems, which are difficult to handle. In an earlier study, we showed that polystyrene nanosphere suspensions mimic the mixed polarity environment of skin cell systems. This paper presents a new method to quantify the effectiveness of sunscreens in the polystyrene nanosphere environment. This method utilizes the intrinsic UV-B fluorescence of polystyrene nanospheres. We studied three UV-B sunscreens by this new method and compared their extinction coefficients with observed values in solvent. The values follow the trend observed in solvents, but the ratio of their extinction coefficient in solvent to the value obtained by this new method is 1.3-1.8 instead of 1. This difference might be caused by the mixed polarity or the microgeometry of the nanosphere system. Regardless of the difference in the extinction coefficients, this new system can be used to test hundreds of chemicals for their sunscreening potential in a cost-effective way. One marked advantage of this new method is its ability to test both hydrophobic and hydrophilic sunscreening chemicals in the same environment. This is virtually impossible for current solvent-based models, which require different solvents for hydrophobic and hydrophilic chemicals. The new method also allows the simultaneous evaluation of a host of photophysical properties of sunscreening chemicals.  相似文献   

19.
钩藤生物碱中一对异构体的TLC-FT-SERS研究   总被引:4,自引:0,他引:4  
傅立叶变换表面增强喇曼光谱(FT-SERS)可高灵敏度检测单一组分的分子结构住处,金、银等金属的米粒子具有表面增强活性^[1],薄层色谱(TLC)可将微量混合物有效分离但不具备指纹检测功能,若将TLC与FT-SERS技术联用,则可使天然药物等提取得到高灵敏度分离与特征光谱检测,这项研究在国内外仅有补步报道^[2~5],钩藤为常用中草药,其有效成分生物碱具有改善心脑血液循环和脑功能的作用及清除自由基抗衰老活性,本文应用TLC-FT-SERS技术对天然药物钩藤中的生物碱进行高灵敏度的分析和特征喇曼光检测,在硅胶色谱板的钩藤碱与异钩藤碱与钩藤碱班点原位分别滴淋灰银胶,直接测得FT-SERS光谱。  相似文献   

20.
Increasing legal requirements for risk assessment and efficacy testing in the dermo-cosmetic field have led to the development of alternative test methods. In this study, the porcine skin model was chosen to test the effect of irradiation on the penetration habits of UV filters and caffeine. For decades, the pig has been recognized as an experimental animal in biomedical research thanks to its morphological and physiological similarities to humans. In this study, we wanted to investigate the effect of UV irradiation on the absorption of octocrylene (OC) and benzophenone-3 (B3) sunscreens used under those circumstances and a model hydrophilic molecule, caffeine (Caf). These particular compounds were chosen due to their different lipophilic profiles. The percutaneous penetration of the two UV filters and Caf was studied after two simulated solar radiation doses of 61.4 kJ m−2. After irradiation simulation, the total absorbed dose was increased for OC while for B3 and Caf it was lower. Thus, modifications in percutaneous absorption have been observed, and it appears that UV could play a crucial role in this process. Moreover, it has been observed that the lipophilic profile of the studied compounds affects percutaneous penetration when irradiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号