首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The excited-state dynamics of a donor-acceptor phenol-pyridinium biaryl cation was investigated in various solvents by femtosecond transient absorption spectroscopy and temperature dependent steady-state emission measurements. After excitation to a near-planar Franck-Condon delocalized excited S(1)(DE) state with mesomeric character, three fast relaxation processes are well resolved: solvation, intramolecular rearrangement leading to a twisted charge-shift (CSh) S(1) state with localized character, and excited-state proton transfer (ESPT) to the solvent leading to the phenoxide-pyridinium zwitterion. The proton transfer kinetics depends on the proton accepting character of the solvent whereas the interring torsional kinetics depends on the solvent polarity and viscosity. In nitriles, ESPT does not occur and interring twisting arises with no significant intrinsic barrier, but still slower than solvation. The CSh state is notably fluorescent. In alcohols and water, ESPT is faster than the solvation and DE → CSh relaxation processes and yields the zwitterion hot ground state, which strongly quenches the fluorescence. In THF, solvation and interring twisting occur first, leading to the fully relaxed, weakly fluorescent CSh state, followed by slow ESPT towards the zwitterion. At low temperature (77 K), the large viscous barrier of the solvent inhibits the torsional relaxation but ESPT still arises to some extent. Strong emission from the DE geometry and planar zwitterion is thus observed. Finally, quantum chemical calculations were performed on the ground and excited state of model phenol-pyridinium and phenoxide-pyridinium compounds. Strong S(1) state energy stabilization is predicted upon twisting in both cases, consistent with a fast relaxation towards the perpendicular geometry. A substantial S(0)-S(1) energy gap is still present for the twisted cationic species, which can explain the long-lived emission of the CSh state in nitriles. A quite different situation arises with the zwitterion for which the S(0)-S(1) energy gap predicted at the twisted geometry is very small. This suggests a close-lying conical intersection and can account for the strong fluorescence quenching observed in solvents where the zwitterion is produced by ESPT.  相似文献   

2.
The excited-state dynamics of a series of Wurster's salts (p-phenylenediamine radical cations) with different subtituents on the nitrogen atoms was investigated under a variety of experimental conditions using a combination of ultrafast spectroscopic techniques. At room temperature, the lifetime of the lowest excited state of all radical cations is on the order of 200 fs, independently of the solvent, that is, water, nitriles, alcohols, and room-temperature ionic liquid. On the other hand, all cations, except that with the bulky nitrogen substituents, become fluorescent below 120 K. The observed dynamics can be accounted for by the presence of a conical intersection between the D(1) and D(0) states. For the cations with a small nitrogen substituent, this conical intersection could be accessed through a twist of one amino group, as already suggested for Wurster's Blue. However, this coordinate cannot be invoked for the cation with bulky nitrogen subtituents, and more probably, pyramidalization of the nitrogen center and/or deformation of the phenyl ring play an important role. Consequently, the excited-state dynamics of these structurally very similar Wurster's salts involves different decay mechanisms.  相似文献   

3.
The excited-state dynamics of two polyfluorene copolymers, one fully conjugated containing phenylene vinylene units alternated with 9,9'-dihexylfluorenyl groups and the other segmented by -(CH2)8- spacer, were studied in dilute solution of different solvents using a picosecond single-photon timing technique. The excited-state dynamics of the segmented copolymer follows the F?rster resonant energy-transfer model which describes intrachain energy-transfer kinetics among random oriented chromophores. Energy transfer is confirmed by analysis of fluorescence anisotropy relaxation with the measurement of a short decay component of about 60 ps. The fluorescence decay surface of the fully conjugated copolymer is biexponential with decay times of about 470 and 900 ps, ascribed to deactivation of chain moieties containing trans and cis isomers already in a photostationary condition. Thus, energy transfer is very fast due to the conjugated nature and rigid-rod-like structure of this copolymer chain.  相似文献   

4.
The aromatic ketone 2,2',4,4'-tetramethoxybenzophenone has a strong absorption band between 300 and 375 nm, and its pi,pi* triplet excited-state is selectively populated in methanol. Both facts make this aromatic ketone a versatile and efficient triplet photocatalyst for the transformation of alpha-diazo carbonyl compounds into mainly the cyclopropanation product.  相似文献   

5.
Merocyanine (MC) isomers that are formed after absorption of a UV photon by 1',3'-dihydro-1',3'-3'-trimethyl-6-nitrospiro[2H-1-benzopyran-2',2'-(2H)-indole] were studied. Several, predominantly TTC and TTT, merocyanine isomers are present in toluene solution ("T" and "C" indicate trans and cis conformations of the C-C bonds in the methine bridge). Excitation in the MC visible absorption band (at 490, 550, and 630 nm) with 100 fs laser pulses was used to study MC excited-state dynamics. Internal conversion on the picosecond time scale was found to be the dominant relaxation pathway. Excited-state isomerization reactions were also observed. Excitation at 630 nm (assigned to TTC isomer excitation) leads to formation of a third isomer (either CTC or CTT). Excitation at 490 nm (assigned to TTT isomer excitation) leads to more complex excited-state relaxation, including formation of two isomers: TTC (absorption at 600 nm) and CTC or CTT (absorption at 650 nm).  相似文献   

6.
5-Fluorouracil is an analogue of thymine and uracil, nucleobases found in DNA and RNA, respectively. The photochemistry of thymine is significant; UV-induced photoproducts of thymine in DNA lead to skin cancer and other diseases. In previous work, we have suggested that the differences in the excited-state structural dynamics of thymine and uracil arise from the methyl group in thymine acting as a mass barrier, localizing the vibrations at the photochemical active site. To further test this hypothesis, we have measured the resonance Raman spectra of 5-fluorouracil at wavelengths throughout its 267 nm absorption band. The spectra of 5-fluorouracil and thymine are very similar. Self-consistent analysis of the resulting resonance Raman excitation profiles and absorption spectrum using a time-dependent wave packet formalism suggests that, at most, 81% of the reorganization energy upon excitation is directed along photochemically relevant modes. This compares well with what was found for thymine, supporting the mass barrier hypothesis.  相似文献   

7.
The excited-state tautomerization dynamics of 7-hydroxyquinoline encapsulated in beta-cyclodextrin is compared with that in pure water by measuring isotope-dependent fluorescence kinetics as well as absorption and emission spectra. The normal species tautomerizes stepwise via forming anionic intermediate species in both systems. However, the enol-deprotonation time (40 ps in water) becomes as large as 170 ps whereas the imine-protonation time of the anionic intermediate (160 ps in water) becomes as short as 85 ps in beta-cyclodextrin. The slow formation and the fast decay of the anionic species are attributed to the unstability of the charged species in hydrophobic cages. Encapsulation can be utilized to enhance fluorescence enormously and to accelerate selective reactions by retarding other processes.  相似文献   

8.
9.
Toward the development of new strategies for the synthesis of multiporphyrin arrays, we have prepared and characterized (electrochemistry and static/time-resolved optical spectroscopy) a series of dyads composed of a zinc porphyrin and a free base porphyrin joined via imine-based linkers. One dyad contains two zinc porphyrins. Imine formation occurs under gentle conditions without alteration of the porphyrin metalation state. Five imine linkers were investigated by combination of formyl, benzaldehyde, and salicylaldehyde groups with aniline and benzoic hydrazide groups. The imine-linked dyads are quite stable to routine handling. The excited-state energy-transfer rate from zinc to free base porphyrin ranges from (70 ps)(-)(1) to (13 ps)(-)(1) in toluene at room temperature depending on the linker employed. The energy-transfer yield is generally very high (>97%), with low yields of deleterious hole/electron transfer. Collectively, this work provides the foundation for the design of multiporphyrin arrays that self-assemble via stable imine linkages, have predictable electronic properties, and have comparable or even enhanced energy-transfer characteristics relative to those of other types of covalently linked systems.  相似文献   

10.
The excited-state proton transfer and subsequent intramolecular ion pair formation of a cupreidine-derived Cinchona organocatalyst () were studied in THF-water mixtures using picosecond time-resolved fluorescence together with global analysis. Full spectral and kinetic characterization of all the fluorescent species allowed us to monitor the 3-step process for the ion pair dissociation. In the first step, proton transfer occurs through a water "wire" from the 6-hydroxyquinoline unit (excited-state acid) to the covalently bonded basic quinuclidine moiety, resulting in a hydrogen bonded ion pair. This was confirmed by the observed kinetic isotope effect in the presence of heavy water. In the second step, the formed ions are further solvated by a few solvent molecules, producing the solvent separated ion pair. Finally, a fully solvated ion pair is formed. The 5-exponential global model derived from the reaction scheme describes the experimental data very well.  相似文献   

11.
The first intermolecular reactions of the excited state of a silicon divalent compound (silylene) with benzene derivatives were discovered. Typically, when a benzene solution of an isolable silylene is irradiated with light of wavelengths longer than 420 nm at room temperature, the corresponding silacyclohepta-2,4,6-triene (silepin) is yielded quantitatively. The photochemical insertion of the silylene toward substituted benzenes occurs in general to give the corresponding substituted silepins. The insertion reaction is highly sensitive to the steric hindrance at a reacting C-C double bond in benzene; during the reactions of the silylene with substituted benzenes, only unsubstituted C-C double bonds in the benzene ring reacted selectively. The irradiation of the silylene in the presence of mesitylene afforded the insertion product to a benzylic C-H bond, indicative of the biradical nature of the excited-state silylene.  相似文献   

12.
The photophysics and excited-state dynamics of nitroperylene (NPe) in solvents of various polarities and viscosities, including a room-temperature ionic liquid, have been investigated by femtosecond-resolved transient absorption spectroscopy. The excited-state absorption spectrum was found to depend substantially on solvent polarity. In the most polar solvents, it is very similar to that of the NPe radical cation generated upon bimolecular quenching by an electron acceptor, denoting a substantial charge-transfer character of the S1 state. Contrary to smaller nitroaromatic compounds, NPe in the S1 state does not undergo ultrafast intersystem crossing (ISC) but decays mainly by internal conversion (IC). In nonprotic solvents, IC involves low-frequency modes with large amplitude motion associated with the nitro group and depends on both the solvent viscosity and polarity. It takes place on a 100 ps time scale in acetonitrile, while in cyclohexane, it is slow enough for ISC to become competitive. Moreover, both the fluorescence quantum yield and the excited-state dynamics were found to differ, depending on which side of the S0-S1 absorption band excitation was performed. This dependence is explained by the inhomogeneous nature of the absorption spectrum arising from a distribution of twist angles of the nitro group relative to the aromatic plane. On the other hand, such excitation wavelength effects were not observed in protic solvents, where the excited-state lifetime was found to be substantially shorter than that in nonprotic solvents. This behavior is rationalized in terms of a H-bonding interaction, which limits the torsional disorder of NPe and favors ultrafast nonradiative deactivation of the excited state. Transient absorption measurements performed for comparative purpose with nitropyrene in acetonitrile confirm the occurrence of ultrafast ISC in smaller nitroaromatic compounds.  相似文献   

13.
Cytosine, a nucleobase found in both DNA and RNA, is known to form photoproducts upon UV irradiation, damaging the nucleic acids and leading to cancer and other diseases. To determine the molecular mechanism by which these photoproducts occur, we have measured the resonance Raman spectra of cytosine at wavelengths throughout its 267 nm absorption band. Self-consistent analysis of the resulting resonance Raman excitation profiles and absorption spectrum using a time-dependent wave packet formalism yields both the excited-state structural changes and electronic parameters. From this analysis, we have been able to determine that, at most, 31% of the reorganization energy upon excitation is directed along photochemically relevant modes.  相似文献   

14.
15.
A study of the excited-state dynamics of (SO2)m clusters following excitation by ultrafast laser pulses in the range of 4.5 eV (coupled 1A2, 1B1 states) and 9 eV (F band) is presented. The findings for the coupled 1A2 and 1B1 states are in good agreement with published computational work on the properties of these coupled states. A mechanism involving charge transfer to solvent is put forward as the source of the excited-state dynamics that follow the excitation of the SO2 F band within (SO2)m+1 clusters with m > 1. The proposed CTTS mechanism is supported by calculations of the energetics of the process and the observed trends in the excited-state lifetimes that correlate very well with the calculated energies.  相似文献   

16.
17.
The fluorescent probe DAPI (4',6-diamidino-2-phenylindole) is an efficient DNA binder. Studies on the DAPI-DNA complexes show that the probe exhibits a wide variety of interactions of different strengths and specificities with DNA. Recently the probe has been used to report the environmental dynamics of a DNA minor groove. However, the use of the probe as a solvation reporter in restricted environments is not straightforward. This is due to the presence of two competing relaxation processes (intramolecular proton transfer and solvation stabilization) in the excited state, which can lead to erroneous interpretation of the observed excited-state dynamics. In this study, the possibility of using DAPI to unambiguously report the environmental dynamics in restricted environments including DNA is explored. The dynamics of the probe is studied in bulk solvents, biomimetics like micelles and reverse micelles, and genomic DNA using steady-state and picosecond-resolved fluorescence spectroscopies.  相似文献   

18.
Excited-state proton transfer (ESPT) reaction of 7-hydroxyquinoline (7-HQ) mediated by methanol molecules has been studied in two room temperature ionic liquids (RTILs) using steady-state and time-resolved fluorescence measurements. While no ESPT is observable in neat RTILs, characteristic tautomer fluorescence of 7-HQ could be observed in the presence of small quantity of methanol (0.5-4.1 M). The observation of a rise time (350 ps-1.4 ns) associated with the tautomer fluorescence suggests that proton transfer in 7-HQ is indeed an excited-state phenomenon that requires considerable solvent reorganization prior to the relay of proton from the hydroxyl group to the distant ring nitrogen atom through suitably organized dimeric chain of methanol molecules. The rise time of the tautomer fluorescence, which has been found to decrease with increasing methanol concentration, is attributed to the change of viscosity of the medium upon methanol addition. While the influence of viscosity on the ESPT kinetics is evident from the data, lack of any definite correlation between the bulk viscosity and the rise time has been interpreted in terms of the microheterogeneous nature of the media that does not allow assessment of the microviscosity around 7-HQ from the bulk viscosity.  相似文献   

19.
Triplet triplet absorption spectra of biphenyl, carbazole and phenanthrene have been studied in rigid glass at 77 K. Oscillator strengths and polarizations are reported. A theoretical study has been performed using the Pariser-Parr-Pople approximation in order to support the band assignments.Phenanthrene is shown to be definitely not related to the other members of the series. Triplet-triplet oscillator strengths are decreased in carbazole, as compared to biphenyl. This effect is discussed in terms of a possible dilution of the ground triplet, in addition to the spectral dilution of the upper triplet states, as previously observed in derivatives of alternant molecules.  相似文献   

20.
The molecule 3,3(')-diethyl-2,2(')-thiacyanine isomerizes after irradiation with light of the proper wavelength. After excitation, it undergoes a transition, in which one or more conical intersections are involved, back to the ground state to form different product photoisomers. The dynamics before and directly after the transition back to the ground state is investigated by transient absorption spectroscopy in a wavelength region of 360-950 nm, as well as by fluorescence upconversion. It is shown that the excited-state dynamics are governed by two time scales: a short one with a decay time of less than 2 ps and a long one with about 9 ps. A thorough comparison of the experimental results with those of configuration interaction singles and time-dependent density functional theory calculations suggests that these dynamics are related to two competing pathways differing in the molecular twisting on the excited surface after photoexcitation. From the experimental point of view this picture arises taking into account the time scales for ground-state bleach, excited-state absorption, stimulated emission, fluorescence, and assumed hot ground-state absorption both in the solvent methanol and ethylene glycol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号