共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimizations at the BLYP and B3LYP levels are reported for mixed uranyl-water/acetonitrile complexes [UO(2)(H(2)O)(5-n)(MeCN)(n)](2+) (n = 0-5), in both the gas phase and a polarizable continuum modeling acetonitrile. Car-Parrinello molecular dynamics (CPMD) simulations have been performed for these complexes in the gas phase, and for selected species (n = 0, 1, 3, 5) in a periodic box of liquid acetonitrile. According to structural and energetic data, uranyl has a higher affinity for acetonitrile than for water in the gas phase, in keeping with the higher dipole moment and polarizability of acetonitrile. In acetonitrile solution, however, water is the better ligand because of specific solvation effects. Analysis of the dipole moment of the coordinated water molecule in [UO(2)(H(2)O)(MeCN)(4)](2+) reveals that the interaction with the second-shell solvent molecules (through fairly strong and persistent O-H···N hydrogen bonds) causes a significant increase of this dipole moment (by more than 1 D). This cooperative polarization of water reinforces the uranyl-water bond as well as the water solvation via strengthened (UO(2))OH(2)···NCMe hydrogen bonds. Such cooperativity is essentially absent in the acetonitrile ligands that make much weaker (UO(2))NCMe···NCMe hydrogen bonds. Beyond the uranyl case, this study points to the importance of cooperative polarization effects to enhance the M(n+) ion affinity for water in condensed phases involving M(n+)-OH(2)···A fragments, where A is a H-bond proton acceptor and M(n+) is a hard cation. 相似文献
2.
Wilkerson MP Burns CJ Dewey HJ Martin JM Morris DE Paine RT Scott BL 《Inorganic chemistry》2000,39(23):5277-5285
Uranium(VI) alkoxide complexes are prepared via metathesis reactions of [UO2Cl2(THF)2]2 with potassium alkoxides in nonaqueous media. The dark red compound U[OCH2C(CH3)3]6, 1, results from redistributive exchange of oxo and neopentoxide ligands between more than one uranium species. Single-crystal X-ray diffraction analysis of 1 reveals a monomer in which the uranium is coordinated in a pseudooctahedral fashion by six neopentoxide ligands. Imposition of steric congestion at the metal center prevents oxo-alkoxide ligand exchange in the reactions using more sterically demanding alkoxides. Simple metathesis between uranyl chloride and alkoxide ligands occurs in the synthesis of golden yellow-orange UO2(OCHPh2)2(THF)2, 2, and yellow UO2[OCH(tBu)Ph]2(THF)2, 3. Single-crystal X-ray diffraction analysis of 2 reveals a monomer in which the uranium is coordinated in a pseudooctahedral fashion by two apical oxo ligands, two diphenylmethoxide ligands occupying trans positions, and two tetrahydrofuran ligands. Coordination of diisopropylmethoxide allows for synthesis of a more complex binary alkoxide system. Single-crystal X-ray diffraction analysis of watermelon red [UO2(OCH(iPr)2)2]4, 4, reveals a tetramer in which each uranium is coordinated in a pseudooctahedral fashion by two apical oxo ligands, one terminal alkoxide, two bridging alkoxide ligands, and one bridging oxo ligand from a neighboring uranyl group. These compounds are characterized by elemental analysis, 1H NMR, infrared spectroscopy, and, for 1, 2, and 4, single-crystal X-ray diffraction analysis. Luminescence spectroscopy is employed to evaluate the extent of aggregation of compounds 2-4 in various solvents. Vibrational spectroscopic measurements of 2-4 imply that, in contrast to the case of uranyl complexes prepared in aqueous environments, coordination of relatively strongly donating alkoxide ligands allows for enhancement of electron density on the uranyl groups such that the uranyl U=O bonds are weakened. Crystal data are as follows. 1: monoclinic space group C2/m, a = 10.6192(8) A, b = 18.36(1) A, c = 10.6151(8) A, beta = 109.637(1) degrees, V = 1949.1(3) A3, Z = 2, dcalc = 1.297 g cm-3. Refinement of 2065 reflections gave R1 = 0.045. 2: monoclinic space group P2(1)/c, a = 6.1796(4) A, b = 15.669(1) A, c = 16.169(1) A, beta = 95.380(1) degrees, V = 1558.7(2) A3, Z = 2, dcalc = 1.664 g cm-3. Refinement of 3048 reflections gave R1 = 0.036. 4: tetragonal space group I4, a = 17.8570(6) A, b = 17.8570(6) A, c = 11.4489(6) A, V = 3650.7(3) A3, Z = 2, dcalc = 1.821 g cm-3. Refinement of 1981 reflections gave R1 = 0.020. 相似文献
3.
Dayán Páez-Hernández Rodrigo Ramírez-Tagle Edelsys Codorniu-Hernández Luis A. Montero-Cabrera Ramiro Arratia-Pérez 《Polyhedron》2010
The coordination and bonding effects of equatorial ligands such as fluoride (F−), chloride (Cl−), cyanide (CN−), isocyanide (NC−), and carbonate (CO3−2) on uranyl dication (UO22+) has been studied using relativistic density functional theory. The ZORA Hamiltonian was applied for the inclusion of relativistic effects taking into account all the electrons for the optimization and the explicit inclusion of spin–orbit coupling effects. Geometry optimizations including the counterions and frequencies analysis were carried out with PW91 and PBE functional. Solvents effects were considered by using the conductor like screening model (COSMO) for water and acetonitrile. The Time-Dependent Density Functional Theory (TDDFT) was used to calculate the excitation energies with GGA SAOP functional and the electronic transitions were analyzed using double group irreducible representations. The theoretical results are in a good agreement with experimental IR, Raman and EXAFS spectra and previous theoretical results. New information about the effect of different (donor and acceptors) ligands on the bonding of uranyl ion and on the electronic transitions involved in these complexes is provided with a possible impact on the understanding of the uranyl coordination chemistry. 相似文献
4.
At 80 K, where the deactivation processes in uranyl luminescence in solutions are temperature independent, the radiationless transition rate depends upon the presence of H2O in the first coordination sphere of the uranyl ion, UO22+. It is found that such radiationless transitions are due to a photophysical intramolecular process. 相似文献
5.
Gary S. Groenewold Wibe A. de Jong Jos Oomens Michael J. Van Stipdonk 《Journal of the American Society for Mass Spectrometry》2010,21(5):719-727
Tris-carboxylate complexes of uranyl [UO2]2+ with acetate and benzoate were generated using electrospray ionization mass spectrometry, and then isolated in a Fourier
transform ion cyclotron resonance mass spectrometer. Wavelength-selective infrared multiple photon dissociation (IRMPD) of
the tris-acetato uranyl anion resulted in a redox elimination of an acetate radical, which was used to generate an IR spectrum that
consisted of six prominent absorption bands. These were interpreted with the aid of density functional theory calculations
in terms of symmetric and antisymmetric −CO2 stretches of the monodentate and bidentate acetate, CH3 bending and umbrella vibrations, and a uranyl O—U—O asymmetric stretch. The comparison of the calculated and measured IR
spectra indicated that the predominant conformer of the tris-acetate complex contained two acetate ligands bound in a bidentate fashion, while the third acetate was monodentate. In similar
fashion, the tris-benzoate uranyl anion was formed and photodissociated by loss of a benzoate radical, enabling measurement of the infrared
spectrum that was in close agreement with that calculated for a structure containing one monodentate and two bidentate benzoate
ligands. 相似文献
6.
Treatment of [UO(2)Cl(2)(thf)(3)] in thf with 2 equiv of Na[PhC(NSiMe(3))(2)] (Na[NCN]) or Na[Ph(2)P(NSiMe(3))(2)] (Na[NPN]) gives uranyl complex [UO(2)(NCN)(2)(thf)] (1) or [UO(2)(NPN)(2)] (3), respectively. Each complex is a rare example of out-of-plane equatorial nitrogen ligand coordination; the latter contains a significantly bent O=U=O unit and represents the first example of a uranyl ion within a quadrilateral-faced monocapped trigonal prismatic geometry. Removal of the thf in 1 gives [UO(2)(NCN)(2)] (2) with in-plane N donor ligands. Addition of 3 equiv of Na[NCN] gives the tris complex [Na(thf)(2)PhCN][[UO(2)(NCN)(3)] (4.PhCN) with elongation and weakening of one U=O bond through coordination to Na(+). Hydrolysis of 4 provides the oxo-bridged dimer [Na(thf)UO(2)(NCN)(2)](2)(micro(2)-O) (6), a complex with the lowest reported O=U=O symmetrical stretching frequency (nu(1) = 757 cm(-)(1)) for a dinuclear uranyl complex. The anion in complex 4 is unstable in solution but can be stabilized by the introduction of 18-crown-6 to give [Na(18-crown-6)][UO(2)(NCN)(3)] (5). The structures of 1-4 and 6 have been determined by crystallography, and all except 2 show significant deviations of the N ligand atoms from the equatorial plane, driven by the steric bulk of the NCN and NPN ligands. Despite the unusual geometries, these distortions in structure do not appear to have any direct effect on the bonding and electronic structure of the uranyl ion. The main influences toward lowering the U=O bond stretching frequency (nu(1)) are the donating ability of the equatorial ligands, overall charge of the complex, and U=O.Na-type interactions. The intense orange/red colors of these compounds are because of low-energy ligand-to-metal charge-transfer electronic transitions. 相似文献
7.
A. G. Beirakhov I. M. Orlova E. G. Il’in L. V. Goeva Yu. N. Mikhailov 《Russian Journal of Inorganic Chemistry》2014,59(11):1244-1246
The reactions of coordinated ligands in uranyl complexes were studied for the first time. The reaction of uranyl hydroxylaminate complexes with aldehyde and ketones of different structure was shown to result in the formation of corresponding oxime complexes. 相似文献
8.
Results from Car-Parrinello molecular dynamics simulations are reported for [UO2(OH2)5]2+, UO2(NO3)2(OH2)2, and UO2(NO3)2(eta2-tmma) (tmma = tetramethylmalonamide) in the gas phase and in aqueous solution. The distances between uranyl and neutral ligands such as water and tmma are decreased by up to 0.2 angstroms upon hydration, whereas those between uranyl and the nitrate ion are increased by up to 0.08 angstroms. According to pointwise thermodynamic integration involving constrained molecular dynamics simulations, solvation facilitates the transition of the chelating nitrate ligand to a eta1-bonding mode: the free energy of UO2(eta2-NO3)(eta1-NO3)(OH2)2 relative to the bis-chelating minimum drops from 3.9 kcal/mol in vacuo to 1.4 kcal/mol in water. Optimizations in a polarizable continuum (specifically, the conductor-like screening model in conjunction with the zero-order regular approximation and triple-zeta Slater basis sets) can qualitatively reproduce the geometrical changes from explicit hydration. 相似文献
9.
The literature indicates a four-fold or six-fold coordination symmetry for UO2+2 in aqueous solution. However, the uranyl ion in crystalline UO2(ClO4)2·7H2O has been found by X-ray diffraction to be coordinated by five water molecules. From the MCD of aqueous UO2(ClO4)2·nH2O we have found evidence for five-fold coordination. A tentative assignment for the excited states in the visible spectrum is also proposed. 相似文献
10.
S. A. Novikov L. B. Serezhkina M. S. Grigor’ev N. V. Manakov V. N. Serezhkin 《Russian Journal of Inorganic Chemistry》2017,62(1):47-54
Three new uranyl complexes [UO2(C5H6O4)(Meur)] (I), [UO2(C5H6O4)(Aa)] (II), and [(UO2)2(C5H6O4)2(Tmur)2(H2O)] ? H2O (III), where C5H6O4 2? is glutarate anion, Meur is methylcarmamide, Aa is acetamide, and Tmur is tetramethylcarbamide, have been synthesized and characterized by X-ray diffraction. 1D uranyl-glutarate complexes have been found in the structures of all compounds; in I and II their composition is [UO2(C5H6O4)(L)] and crystallographic formula is AQ21M1 (where A = UO2 2+, Q21 = C5H6O4 2-, and M1 = L = Meur or Aa). In crystals III, chain complexes have the composition [(UO2)2(C5H6O4)2(Tmur)2(H2O)] and crystallographic formula A2Q2 02M3 1 (where A = UO2 2+, Q02 = C5H4O6 2-, and M1 = Tmur or H2O). All compounds were characterized by IR spectroscopy. Structural features of all known complexes of uranyl glutarate with neutral ligands have been discussed. 相似文献
11.
The preparation, spectroscopic characterization and thermal stability of neutral complexes of uranyl ion, UO2
2+, with phosphonate ligands, such as diphenylphosphonic acid (DPhP), diphenyl phosphate (DPhPO) and phenylphosphonic acid (PhP)
are described. The complexes were prepared by a reaction of hydrated uranyl nitrate with appropriate ligands in methanolic
solution. The ligands studied and their uranyl complexes were characterized using thermogravimetric and elemental analyses,
ESI-MS, IR and UV–Vis absorption and luminescence spectroscopy as well as luminescence lifetime measurements. Compositions
of the products obtained dependent on the ligands used: DPhP and DPhPO form UO2L2 type of complexes, whereas PhP forms UO2L complex. Based on TG and DTG curves a thermal stability of the complexes was determined. The complexes UO2PhP·2H2O and UO2(DPhPO)2 undergo one-step decomposition, while UO2PhP · 2H2O is decomposed in a two-step process. The thermal stability of anhydrous uranyl complexes increases in the series: DPhPO < PhP < DPhP.
Obtained IR spectra indicate bonding of P–OH groups with uranyl ion. The main fluorescence emission bands and the lifetimes
of these complexes were determined. The complex of DPhP shows a green uranyl luminescence, while the uranyl emission of the
UO2PhP and UO2(DPhPO)2 complexes is considerably weaker. 相似文献
12.
《Journal of Coordination Chemistry》2012,65(15):2415-2425
AbstractTwo new uranyl coordination compounds, [C9H17N2]3[(UO2)2(CrO4)2Cl2(H2O)2]Cl·5H2O (1) and (C9H17N2)[(UO2)(C2O4)Cl] (2), have been synthesized by adding potassium dichromate (K2Cr2O7) or oxalic acid dihydrate (H2C2O4·2H2O) solution into an aqueous solution of uranyl nitrate and 1-butyl-2,3-dimethylimidazolium chloride [Bmmim]Cl. [Bmmim]Cl provides the charge balance and Cl ions that coordinate with uranyl ions. The fundamental building units of 1 and 2 are UO6Cl pentagonal bipyramidal structures. Compound 1 exhibits a graphene-like structure with a system molar ratio of 1:1 for U:Cr and crystallizes in the orthorhombic space group Pbca, with a = 25.644(3) Å, b = 12.996(14) Å and c = 29.198(4) Å. 16-Membered rings are formed by CrO42? and UO22+ in the crystal structure of 1. Compound 2 crystallizes in monoclinic space group P21/n, with a = 10.759(3) Å, b = 11.395(3) Å, c = 14.149(4) Å, β = 102.962(9)° and shows one-dimensional (1D) serrated chains. Within the crystal structures of 1 and 2, C–H[Bmmim]Cl?O hydrogen bonds are identified. O–Hwater?Cl hydrogen bonds are also detected in the crystal structure for 1. 相似文献
13.
Rios D Rutkowski PX Shuh DK Bray TH Gibson JK Van Stipdonk MJ 《Journal of mass spectrometry : JMS》2011,46(12):1247-1254
Reported here is a comparison of electron transfer dissociation (ETD) and collision‐induced dissociation (CID) of solvent‐coordinated dipositive uranyl and plutonyl ions generated by electrospray ionization. Fundamental differences between the ETD and CID processes are apparent, as are differences between the intrinsic chemistries of uranyl and plutonyl. Reduction of both charge and oxidation state, which is inherent in ETD activation of [AnVIO2(CH3COCH3)4]2+, [AnVIO2(CH3CN)4]2, [UVIO2(CH3COCH3)5]2+ and [UVIO2(CH3CN)5]2+ (An = U or Pu), is accompanied by ligand loss. Resulting low‐coordinate uranyl(V) complexes add O2, whereas plutonyl(V) complexes do not. In contrast, CID of the same complexes generates predominantly doubly‐charged products through loss of coordinating ligands. Singly‐charged CID products of [UVIO2(CH3COCH3)4,5]2+, [UVIO2(CH3CN)4,5]2+ and [PuVIO2(CH3CN)4]2+ retain the hexavalent metal oxidation state with the addition of hydroxide or acetone enolate anion ligands. However, CID of [PuVIO2(CH3COCH3)4]2+ generates monopositive plutonyl(V) complexes, reflecting relatively more facile reduction of PuVI to PuV. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
14.
15.
Albrecht M Spiess O Schneider M Weis P 《Chemical communications (Cambridge, England)》2002,(7):786-787
The Val-Val-bridged dicatechol ligand L1-H4 forms triplybridged dinuclear complexes with titanium(IV) ions, while the more flexible Val-Val-Val derivative L2-H4 leads to mixtures of complexes containing species with a cyclic arrangement of the ligand; with [cis-MoO2]2+ on the other hand, a well-defined macrocycle [(L2)MoO2]2- is formed which possesses a loop-type structure in the peptidic part of the ligand. 相似文献
16.
Sawicki M Siaugue JM Jacopin C Moulin C Bailly T Burgada R Meunier S Baret P Pierre JL Taran F 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(12):3689-3697
New tripodal gem-(bis-phosphonates) uranophiles were discovered by a screening method that allowed for the selection of ligands with strong uranyl-binding properties in a convenient microtiter-plate format. The method is based on competitive uranium binding by using Sulfochlorophenol S as chromogenic chelate. This dye compound was found to present high uranyl complexation properties and allowed to highlight ligands presenting association constants for UO(2+)(2) up to 10(18) at pH 7.4 and 10(20) at pH 9. A collection of 40 known ligands including polycarboxylate, hydroxamate, catecholate, hydroxypyridonate and hydroxyquinoline derivatives was tested. Also screened was a combinatorial library prepared from seven amine scaffolds and eight acrylates bearing diverse chelating moieties. Among these 96 tested candidates, a tripod derivative bearing gem-bis-phosphonates moieties was found to present the highest complexation properties over a wide range of pH and was further studied. 相似文献
17.
A.R. Brajer T.E. Farley J.W. Kauffman L.K. Young R.J. Williams J.W. Rogers 《Analytica chimica acta》1977,91(2):165-173
Polarographic and spectrophotometric data show that tin(II) chloride is a weak electrolyte in dilute acetonitrile solutions. The dominant species, SnCl2, exists in a labile equilibrium with the ions SnCl+ and SnCl3- Oxidation and reduction of these ionic species is responsible for all observed polarographic plateaux. The dichloro—tin(II) molecule is shown to be a good acceptor species in acetonitrile solution, readily forming 1:1 complexes with ligands such as 4-picoline N-oxide. 相似文献
18.
Morris DE 《Inorganic chemistry》2002,41(13):3542-3547
Detailed voltammetric results for five uranyl coordination complexes are presented and analyzed using digital simulations of the voltammetric data to extract thermodynamic (E(1/2)) and heterogeneous electron-transfer kinetic (k(0) and alpha) parameters for the one-electron reduction of UO(2)(2+) to UO(2)(+). The complexes and their corresponding electrochemical parameters are the following: [UO(2)(OH(2))(5)](2+) (E(1/2) = -0.169 V vs Ag/AgCl, k(0) = 9.0 x 10(-3) cm/s, and alpha = 0.50); [UO(2)(OH)(5)](3-) (-0.927 V, 2.8 x 10(-3) cm/s, 0.46); [UO(2)(C(2)H(3)O(2))(3)](-) (-0.396 V, approximately 0.1 cm/s, approximately 0.5); [UO(2)(CO(3))(3)](4-) (-0.820 V, 2.6 x 10(-5) cm/s, 0.41); [UO(2)Cl(4)](2-) (-0.065 V, 9.2 x 10(-3) cm/s, 0.30). Differences in the E(1/2) values are attributable principally to differences in the basicity of the equatorial ligands. Differences in rate constants are considered within the context of Marcus theory of electron transfer, but no specific structural change(s) in the complexes between the two oxidation states can be uniquely identified with the underlying variability in the heterogeneous rate constants and electron-transfer coefficients. 相似文献
19.
The interaction between the uranyl ion and perchlorate in anhydrous acetonitrile has been investigated by FT-IR and Raman spectroscopy. Vibrations assigned to uncoordinated (u), monodentate (m), and bidentate (b) perchlorate anions were identified in 0.075M solutions. Quantitative data indicate that perchlorate is distributed as follows: 37 ± 2% are uncoordinated, 36 ± 7% are monodentate, and 27 ± 7% are bidentate. This is in agreement with the conductivity of the solutions which is at the lower end of the range accepted for 1:1 electrolytes. The splittings v4–v1(m) and v8–v1(b) of 147 and 246 cm?1, respectively, point to a large inner-sphere interaction. An equilibrium occurs between two differently coordinated species. Various amounts of DMSO were added to 0.05M perchlorate solutions (R′ = [DMSO]t/[UO]t = 1–10). The v7 (SO) and v22 (CS) vibrations of DMSO were used to determine the average number of coordinated DMSO molecules per uranyl ion, which is close to 4. Some bidentate perchlorate ions are still present in these solutions, but all the MeCN molecules (2.6 on average) are expelled out of the inner coordination sphere. The data can again be interpreted in terms of an equilibrium between differently coordinated species. The average coordination number of the uranyl ion is 4.4, as the perchlorate salt in MeCN solution, and may be somewhat smaller in the presence of DMSO. The possible presence of dimeric species is also discussed. 相似文献
20.
Crystalline ZrPO(4)Cl(CH(3))(2)SO was prepared by direct precipitation in the presence of oxalic acid as a zirconium complexing agent. The structure of ZrPO(4)Cl(CH(3))(2)SO, refined with the Rietveld method using X-ray powder diffraction data, was confirmed to be close to that of the compound prepared using gamma-zirconium phosphate as a precursor. Chloride anions directly bonded to zirconium were found to act as weak ligands; this made possible their replacement with other monodentate anionic ligands. The preparation and a preliminary characterization of a series of inorganic derivatives obtained by topotactic replacement of Cl with OH, Br, MSO(4) (M = H, NH(4), Na), NaMoO(4), and HCrO(4) anions is reported. The possibility of replacement of chloride also with organic anions, such as alkoxides and carboxylates, and the possibility of substituting also dimethyl sulfoxide with other neutral ligands, as shown by preliminary study, makes ZrPO(4)Cl(CH(3))(2)SO a useful and very flexible precursor for materials chemistry. 相似文献