首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The diameter of single walled carbon nanotubes (SWNTs) determines the electronic properties of the nanotube. The diameter of carbon nanotubes is dictated by the diameter of the catalyst particle. Here we describe the use of iron nanoparticles synthesized within the Dps protein cage as catalysts for the growth of single-walled carbon nanotubes. The discrete iron particles synthesized within the Dps protein cages when used as catalyst particles gives rise to single-walled carbon nanotubes with a limited diameter distribution.  相似文献   

2.
We have used atomically detailed simulations to examine the adsorption and transport diffusion of CO2 and N2 in single-walled carbon nanotubes at room temperature as a function of nanotube diameter. Linear and spherical models for CO2 are compared, showing that representing this species as spherical has only a slight impact in the computed diffusion coefficients. Our results support previous predictions that transport diffusivities of molecules inside carbon nanotubes are extremely rapid when compared with other porous materials. By examining carbon nanotubes as large as the (40,40) nanotube, we are able to compare the transport rates predicted by our calculations with recent experimental measurements. The predicted transport rates are in reasonable agreement with experimental observations.  相似文献   

3.
A simple model for joining two single-walled carbon nanotubes (SWNTs) with different, arbitrary chiralities is used to systematically label junction structures which contain pentagon-heptagon pairs. The model is also used, together with density functional theory, to study the energetics of diameter and chirality changes of thin SWNTs during catalyzed growth or regrowth. We choose zigzag and armchair SWNTs attached to a Ni(55) cluster for our case studies.  相似文献   

4.
Aligned single-walled carbon nanotubes (SWNTs) and hierarchical SWNT assembly were fabricated by electrospinning. The high fiber elongation and high DC electric field applied during the electrospinning process result in the orientation of the SWNTs along the axial direction of the fiber. The alignment of the electropsun composite fiber transfers this local SWNT orientation to macroscopically aligned SWNTs. After removing the polymer component from the aligned composite fiber, we produced large area aligned SWNTs. The results show that the directional control of SWNT alignment and debundling of SWNTs into individual tubes can be simultaneously realized.  相似文献   

5.
We have studied the compatibility of various catalysts for ethylene and ethanol chemical vapor deposition (CVD) syntheses of single-walled carbon nanotubes (SWNTs) on Si substrates. A strong selectivity between the catalyst elemental species and carbon source was found; SWNT yield for Fe (Co) catalysts was much higher for ethylene (ethanol) CVD than for ethanol (ethylene) CVD. This strong and completely opposite selectivity implies significantly different SWNT growth mechanisms for ethanol and ethylene CVD on Si substrates.  相似文献   

6.
Detailed HREM studies on carbon nanotubes (CNTs) synthesized via chemical vapor deposition (CVD) using nanoengineered Fe particles on oxide supports show capped tops and open-ended roots. We demonstrate that the pristine catalyst particle dictates the CNT diameter and number of walls at nucleation. The consecutive inward formation of concentric graphene caps during nucleation constricts and elongates the catalyst particle within the tube core. Continued growth stems from the oxide support.  相似文献   

7.
Cobalt-filled apoferritin (Co-ferritin) was, for the first time, used as a wet catalyst for the synthesis of single-walled carbon nanotubes (SWNTs) with narrow diameter distribution. Co-ferritins were spin-coated and converted to cobalt nanoparticles by calcination. Using chemical vapor deposition, suspended networks of SWNTs were formed on pillar-structured substrates. The suspended SWNTs show narrow tube diameter distribution with a relatively good graphite structure. By virtue of the low diffusion coefficient of cobalt, Co-ferritin might be more useful for narrow diameter SWNTs growth than ferritins, which encase iron particles.  相似文献   

8.
We have studied the mechanism of the initial stages of nitrogen-doped single-walled carbon nanotube growth illustrated for the case of a floating catalyst chemical vapor deposition system, which uses carbon monoxide (CO) and ammonia (NH(3)) as precursors and iron as a catalyst. We performed first-principles electronic-structure calculations, fully incorporating the effects of spin polarization and magnetic moments, to investigate the bonding and chemistry of CO, NH(3), and their fragments on a model Fe(55) icosahedral cluster. A possible dissociation path for NH(3) to atomic nitrogen and hydrogen was identified, with a reaction barrier consistent with an experimentally determined value we measured by tandem infrared and mass spectrometry. Both C-C and C-N bond formation reactions were found to be barrierless and exothermic, while a parasitic reaction of HCN formation had a barrier of over 1 eV.  相似文献   

9.
Impact of oil type on nanoemulsion formation and Ostwald ripening stability   总被引:5,自引:0,他引:5  
The formation of stable transparent nanoemulsions poses two challenges: the ability to initially create an emulsion where the entire droplet size distribution is below 80 nm, and the subsequent stabilization of this emulsion against Ostwald ripening. The physical properties of the oil phase and the nature of the surfactant layer were found to have a considerable impact on nanoemulsion formation and stabilization. Nanoemulsions made with high viscosity oils, such as long chain triglycerides (LCT), were considerably larger ( D = 120 nm) than nanoemulsions prepared with low viscosity oils such as hexadecane ( D = 80 nm). The optimization of surfactant architecture, and differential viscosity eta D/eta C, has led to the formation of remarkably small nanoemulsions. With average sizes below 40 nm they are some of the smallest homogenized emulsions ever reported. What is more remarkable is that LCT nanoemulsions do not undergo Ostwald ripening and are physically stable for over 3 months. Ostwald ripening is prevented by the large molar volume of long chain triglyceride oils, which makes them insoluble in water thus providing a kinetic barrier to Ostwald ripening. Examination of the Ostwald ripening of mixed oil nanoemulsions found that the entropy gain associated with oil demixing provided a thermodynamic barrier to Ostwald ripening. Not only are the nanoemulsions created in this work some of the smallest reported, but they are also thermodynamically stable to Ostwald ripening when at least 50% of the oil phase is an insoluble triglyceride.  相似文献   

10.
Single-walled carbon nanotubes (SWCNTs) were directly dispersed into various alcohols by sonicating the nanotubes in the presence of poly(4-vinylpyridine) (P4VP). Depending upon the alcohol, it was possible to disperse up to 0.3 g of SWCNTs per liter of alcohol using only 0.6 g of P4VP, and with solution stability greater than 6 weeks. Scanning electron microscopy of "bucky" paper prepared from the polymer-treated nanotubes revealed reduced bundle size compared to the corresponding untreated nanotube paper. Additionally, the applicability of the dispersion system in the formation of SWCNT/silica composites is demonstrated.  相似文献   

11.
12.
We present a study on the electronic behavior of films of as-prepared and purified single-walled carbon nanotubes (SWNTs) and demonstrate the important role that chemical functionalization plays in modifying their electronic properties, which in turn throws further light on the mechanism of action of SWNT-based sensors. Films of electric arc SWNTs were prepared by spraying, and optical spectroscopy was used to measure the effective film thickness. The room-temperature conductivities (sigma(RT)) of thin films deposited from as-prepared and purified SWNTs are in the range sigma(RT) = 250-400 S/cm, and the nonmetallic temperature dependence of the conductivity indicates the presence of tunneling barriers, which dominate the film conductivity. Chemical functionalization of SWNTs with octadecylamine (ODA) and poly(m-aminobenzenesulfonic acid) (PABS) significantly decreases the conductivity; sigma(RT) = 3 and 0.3 S/cm for SWNT-ODA and SWNT-PABS, respectively.  相似文献   

13.
Single-walled carbon nanotube arrays attached to conductive transparent electrodes have previously shown promise for use in photovoltaic devices, whilst still retaining light transmission. Here, chemical modification of these thin (<200 nm) arrays with PAMAM-type dendrons has been undertaken to enhance the photoresponse of these devices. The effect of modification on the electrode was measured by differential pulse voltammetry to detect the dendrons, and the effect on the nanotubes was measured by Raman spectroscopy. Solar simulator illumination of the cells was performed to measure the effect of the nanotube modification on the cell power, and determine the optimal modification. Electrochemical impedance spectroscopy was also used to investigate the equivalent electronic circuit elements of the cells. The optimal dendron modification occurred with the second generation (G-2.0), which gave a 70% increase in power over the unmodified nanotube array.  相似文献   

14.
Fourier transform infrared spectroscopy is used to study CO adsorption in single-walled carbon nanotubes. Evidence for adsorption in endohedral and groove/external surface sites is presented through displacement studies involving both CO and CO2. Blue-shifted CO stretching frequencies also indicate that CO hydrogen bonds to hydroxyl functionalities created on the nanotubes by acid purification steps. N2 surface area measurements are used to further understand the porosity of the nanotube samples and to help explain the spectroscopic results.  相似文献   

15.
We have succeeded in dispersing single-walled carbon nanotubes (SWNTs) into an aqueous solution of poly(ethylene glycol)-terminated malachite green derivative (PEG-MG) through simple sonication. It was found that UV exposure caused reaggregation of these predispersed SWNTs in the same aqueous medium, as adsorbed PEG-MG photochromic chains could be effectively photocleavaged from the nanotube surface. The observed light-controlled dispersion and reaggragation of SWNTs in the aqueous solution should facilitate the development of SWNT dispersions with a controllable dispersity for potential applications.  相似文献   

16.
Light-induced difference THz spectroscopy was used to investigate the dielectric response of free-stand single-walled carbon nanotubes (SWCNTs) films in THz region. We observed an enhanced transmission of the peak-signal of THz wave through SWCNTs films under 800 nm pump. In frequency domain, the transparency came from 0.5 to 2.1 THz and the absorption was in 2.1–3.0 THz region. The pump power dependency of the transmission showed this was a nonlinear effect. The dielectric constant response of the SWCNTs films was analyzed theoretically. The analysis suggests that the nonlinear optical properties stem from two factors, which are Drude and Lorentz term for metallic and semiconducting SWCNTs, respectively.  相似文献   

17.
As-synthesized single-walled carbon nanotubes (SWNTs) are bundled mixtures of different species. The current challenge in the field of carbon nanotube research lies in the processing and separation of SWNTs, which first require efficient dispersion of individual SWNTs in solvents. We report DNA-mimicking polysoap surfactants that disperse SWNTs in aqueous solutions more effectively than DNA. The polysoaps are synthesized by functionalizing the side chain of poly(styrene-alt-maleic acid) with aminopyrene. The synthetic nature of the polysoap opens a new approach to further optimization of not only SWNT dispersion efficiency but also multi-functional SWNT dispersing surfactant.  相似文献   

18.
19.
We propose a statistical and macroscopic analysis to estimate the catalyst activity of water-assisted growth (super-growth) of single-walled nanotubes (SWNT) and to characterize SWNT forests. The catalyst activity was estimated to be 84% (+/-6%), the highest ever reported. The SWNT forest was found to be a very sparse material where SWNTs represent only 3.6% of the total volume. This structural sparseness is believed to play a critical role in achieving highly efficient growth.  相似文献   

20.
We have previously demonstrated that a designed amphiphilic peptide helix, denoted nano-1, coats and debundles single-walled carbon nanotubes (SWNTs) and promotes the assembly of these coated SWNTs into novel hierarchical structures via peptide-peptide interactions. The purpose of this study is to better understand how aromatic content impacts interactions between peptides and SWNTs. We have designed a series of peptides, based on the nano-1 sequence, in which the aromatic content is systematically varied. Atomic force microscopy measurements and optical absorption spectroscopy reveal that the ability to disperse individual SWNTs increases with increasing aromatic residues in the peptide. Altogether, the results indicate that pi-stacking interactions play an important role in peptide dispersion of SWNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号