首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Metal complexation studies were performed with the ditopic pyrimidine-hydrazone (pym-hyz) strand 6-hydroxymethylpyridine-2-carboxaldehyde (2-methyl-pyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) and Pb(ClO(4))(2)·3H(2)O, Pb(SO(3)CF(3))(2)·H(2)O, Zn(SO(3)CF(3))(2), and Zn(BF(4))(2) to examine the ability of 1 to form various supramolecular architectures. X-ray crystallographic and NMR studies showed that coordination of the Pb(II) salts with 1 on a 2:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2) resulted in the linear complexes [Pb(2)1(ClO(4))(4)] (2), [Pb(2)1(ClO(4))(3)(H(2)O)]ClO(4) (3), and [Pb(2)1(SO(3)CF(3))(3)(H(2)O)]SO(3)CF(3) (4). Two unusually distorted [2 × 2] grid complexes, [Pb1(ClO(4))](4)(ClO(4))(4) (5) and [Pb1(ClO(4))](4)(ClO(4))(4)·4CH(3)NO(2) (6), were formed by reacting Pb(ClO(4))(2)·6H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2). These grids formed despite coordination of the hydroxymethyl arms due to the large, flexible coordination sphere of the Pb(II) ions. A [2 × 2] grid complex was formed in solution by reacting Pb(SO(3)CF(3))(2)·H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN as shown by (1)H NMR, microanalysis, and ESMS. Reacting the Zn(II) salts with 1 on a 2:1 metal/ligand ratio gave the linear complexes [Zn(2)1(H(2)O)(4)](SO(3)CF(3))(4)·C(2)H(5)O (7) and [Zn(2)1(BF(4))(H(2)O)(2)(CH(3)CN)](BF(4))(3)·H(2)O (8). (1)H NMR studies showed the Zn(II) and Pb(II) ions in these linear complexes were labile undergoing metal ion exchange. All of the complexes exhibited pym-hyz linkages in their cisoid conformation and binding between the hydroxymethyl arms and the metal ions. No complexes were isolated from reacting either of the Zn(II) salts with 1 on a 1:1 metal/ligand ratio, due to the smaller size of the Zn(II) coordination sphere as compared to the much larger Pb(II) ions.  相似文献   

2.
A new polydentate ligand 4,4'-bipyridazine (4,4'-bpdz) was prepared by employing inverse electron demand cycloaddition of 1,2,4,5-tetrazine. A unique combination of structural simplicity, ampolydentate character and efficient donor properties towards Cu(I), Cu(II) and Zn(II) provide wide new possibilities for the synthesis of coordination polymers incorporating the 4,4'-bpdz module either as a bi-, tri- or tetradentate connector between the metal ions. 1D coordination polymers Cu(2)(4,4'-bpdz)(CH(3)CO(2))(4) x 4H(2)O and Zn(4,4'-bpdz)(NO(3))(2), and interpenetrated (4,4)-nets in [Cu(4,4'-bpdz)(2)(H(2)O)(2)]S(2)O(6) were closely related to 4,4'-bipyridine compounds. 1D "ladder-like" polymer Cu(2)(4,4'-bpdz)(3)(CF(3)CO(2))(4) and the unprecedented 3D binodal net ({8(6)}{6(3);8(3)}) in [Cu(3)(4,4'-bpdz)(6)(H(2)O)(4)](BF(4))(6) x 6H(2)O were based upon a combination of linear and angular organic bridges. Complex [Cu(3)(OH)(2)(4,4'-bpdz)(3)(H(2)O)(2){CF(3)CO(2)}(2)](CF(3)CO(2))(2) x 2H(2)O has a "NbO-like" 3D topology incorporating discrete dihydroxotricopper(II) clusters linked by tri- and tetradentate ligands. The tetradentate function of the 4,4'-bpdz ligand was especially relevant for copper(I) complexes, which adopt layered Cu(2)X(2)(4,4'-bpdz) (X = Cl, Br) or 3D chiral framework (X = I) structures based upon infinite (CuX)(n) chains. The electron deficient character of the ligand was manifested by short anion-pi interactions (O-pi 3.02-3.20; Cl-pi 3.35 A), which may be involved as a factor for controlling the supramolecular structure.  相似文献   

3.
Li D  Li S  Yang D  Yu J  Huang J  Li Y  Tang W 《Inorganic chemistry》2003,42(19):6071-6080
The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.  相似文献   

4.
A new bis-tetradentate acyclic amine ligand L(Et) has been synthesized from 4,6-bis(aminomethyl)-2-phenylpyrimidine and 2-vinylpyridine. Dinuclear complexes, Mn(II)(2)L(Et)(MeCN)(H(2)O)(3)(ClO(4))(4) (1), Fe(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (2), Co(II)(2)L(Et)(H(2)O)(3)(MeCN)(2)(BF(4))(4) (3), Ni(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (4), Ni(II)(2)L(Et)(H(2)O)(4)(ClO(4))(4)·8H(2)O (4'), Cu(II)(2)L(Et)(BF(4))(4)·MeCN (5), Zn(II)(2)L(Et)(BF(4))(2)(BF(4))(2)·?MeCN (6), were obtained from 1 : 2 reactions of L(Et) and the appropriate metal salts in MeCN, whereas in MeOH tetranuclear complexes, Mn(II)(4)(L(Et))(2)(OH)(4)(ClO(4))(4) (7), Fe(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·5/2H(2)O (8), Co(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (9), Ni(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·4H(2)O (10), Cu(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (11) and Zn(II)(4)(L(Et))(2)(F)(4)(BF(4))(4) (12), result. Six complexes have been structurally characterized: in all cases each L(Et) is bis-tetradentate and provides a pyrimidine bridge between two metal centres. As originally anticipated, complexes 1, 4' and 6 are dinuclear, while 9, 10 and 12 are revealed to be tetranuclear, with two M(2)(L(Et))(4+) moieties bridged by two pairs of fluoride anions. Weak to moderate antiferromagnetic coupling between the metal centres is a feature of complexes 2, 3, 4, 8, 9 and 10. The dinuclear complexes 1-6 undergo multiple, mostly irreversible, redox processes. However, the pyrimidine-based dicopper(II) complex 5 undergoes a two electron quasi-reversible reduction, Cu(II)(2)→ Cu(I)(2), and this occurs at a more positive potential [E(m) = +0.11 V (E(pc) = -0.03 and E(pa) = +0.26 V) vs. 0.01 M AgNO(3)/Ag] than for either of the dicopper(II) complexes of the analogous pyrazine-based ligands.  相似文献   

5.
A dinucleating hexaazadiphenol macrocyclic ligand, 15,31-dimethyl-3,11,19,27,33,35-hexaazapentacyclo[27.3.1.1.(5,9)1.(13,17)1. (21,25)]hexatriaconta-5,7,9(33),13,15,17(34),21,23,25(35),29,31,1(36)- dodecaene-34,36-diol (H2L), forms a number of protonated, neutral, and/or hydroxo mononuclear, homodinuclear, and heterodinuclear complexes with the divalent metal ions Cu2+, Cd2+, Mn2+, and Zn2+, controlled by the stoichiometry of the metal ion and ligand as well as the pH values of the solution. Their stability constants and species distribution as a function of p[H] are determined. The pH potentiometric studies show that the dinuclear complexes are formed via the mononuclear chelates in which two kinds of coordination patterns are observed. One is that the metal ions are complexed by exactly half of coordination sites of the dinucleating macrocycle (N3O-), and the other is that the metal ions occupy salen-like sites of the macrocycle (N3O(2)2-). In the 2:1 systems (2:1 molar ratio of metal ion to ligand), the mononuclear species predominate in acidic solutions while the dinuclear species predominate in basic solutions, except for the case of copper. The protonated mononuclear complex [H2LZn](NO3)(2).5H2O forms triclinic crystals, of space group P1, with a = 10.7797(12) A, b = 10.9047(12) A, c = 17.0176(15) A, alpha = 106.857(9) degrees, beta = 95.822(8) degrees, gamma = 100.191(9) degrees, and Z = 2; the neutral heterodinuclear complex [LZnCdCl2].6H2O forms monoclinic crystals, of space group C2/c, with a = 16.234(5) A, b = 15.976(9) A, c = 29.829(11) A, alpha = 90 degrees, beta = 90.28(2) degrees, gamma = 90 degrees, and Z = 8.  相似文献   

6.
The synthesis and structural analysis (single crystal X-ray data) of two mononuclear ([Cu(L(1))(CN)]BF(4) and [Cu(L(3))(CN)](BF(4))) and three related, cyanide-bridged homodinuclear complexes ([{Cu(L(1))}(2)(CN)](BF(4))(3)·1.35 H(2)O, [{Cu(L(2))}(2)(CN)](BF(4))(3) and [{Ni(L(3))}(2)(CN)](BF(4))(3)) with a tetradentate (L(1)) and two isomeric pentadentate bispidine ligands (L(2), L(3); bispidines are 3,7-diazabicyclo[3.3.1]nonane derivatives) are reported, together with experimental magnetic, electron paramagnetic resonance (EPR), and electronic spectroscopic data and a ligand-field-theory-based analysis. The temperature dependence of the magnetic susceptibilities and EPR transitions of the dicopper(II) complexes, together with the simulation of the EPR spectra of the mono- and dinuclear complexes leads to an anisotropic set of g- and A-values, zero-field splitting (ZFS) and magnetic exchange parameters (Cu1: g(z) = 2.055, g(x) = 2.096, g(y) = 2.260, A(z) = 8, A(x) = 8, A(y) = 195 × 10(-4) cm(-1), Cu2: g and A as for Cu(1) but rotated by the Euler angles α = -6°, β = 100°, D(exc) = -0.07 cm(-1), E(exc)/D(exc) = 0.205 for [{Cu(L(1))}(2)(CN)](BF(4))(3)·1.35 H(2)O; Cu1,2: g(z) = 2.025, g(x) = 2.096, g(y) = 2.240, A(z) = 8, A(x) = 8, A(y) = 190 × 10(-4)cm(-1), D(exc) = -0.159 cm(-1), E(exc)/D(exc) = 0.080 for [{Cu(L(2))}(2)(CN)](BF(4))(3)). Thorough ligand-field-theory-based analyses, involving all micro states and all relevant interactions (Jahn-Teller and spin-orbit coupling) and DFT calculations of the magnetic exchange leads to good agreement between the experimental observations and theoretical predictions. The direction of the symmetric magnetic anisotropy tensor D(exc) in [{Cu(L(2))}(2)(CN)](BF(4))(3) is close to the Cu···Cu vector (22°), that is, nearly perpendicular to the Jahn-Teller axis of each of the two Cu(II) centers, and this reflects the crystallographically observed geometry. Antisymmetric exchange in [{Cu(L(1))}(2)(CN)](BF(4))(3)·1.35 H(2)O causes a mixing between the singlet ground state and the triplet excited state, and this also reflects the observed geometry with a rotation of the two Cu(II) sites around the Cu···Cu axis.  相似文献   

7.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

8.
Several synthetic approaches for the preparation of double metal cyanide (DMC) derivatives of iron(II) and zinc(II) are described. These include (1) metathesis reactions of ZnCl(2) or ZnI(2) with KCpFe(CN)(2)CO in aqueous solution, (2) reactions of KCpFe(CN)(2)CO and its phosphine-substituted analogues with Zn(CH(3)CN)(4)(BF(4))(2) and subsequent displacement of acetonitrile at the zinc centers by the addition of a neutral (phosphine) or anionic (phenoxide) ligand, and (3) reactions of the protonated HCpFe(CN)(2)(phosphine) complexes with Zn(N(SiMe(3))(2))(2), followed by the addition of phenols. All structures are based on a diamond-shaped planar arrangement of the Fe(2)(CN)(4)Zn(2) core with various appended ligands at the metal sites. Although attempts to replace the iodide ligands in [CpFe(mu-CN)(2)PPh(3)ZnI(THF)](2) with acetate using silver acetate failed, two novel cationic mixed-metal cyanide salts based on the [CpFe(PPh(3))(mu-CN)(2)Zn(NC(5)H(5))](2)(2+) framework were isolated from pyridine solution and their structures were defined by X-ray crystallography. The anionic ligand bound to zinc in these derivatives, which serve as an anionic polymerization initiator, was shown to be central to the catalytic copolymerization reaction of CO(2)/epoxide to provide polycarbonates and cyclic carbonates. The structurally stabilized phosphine-strapped complexes [CpFe(mu-CN)(2)Zn(X)THF](2)(mu-dppp), where X = I or phenolate, were shown to be thermally stable under the conditions (80 degrees C) of the copolymerization reaction by in situ infrared spectroscopy. Both of these derivatives were proposed to serve as mimics for the heterogeneous DMC catalysts in the patent literature, with the derivative where the initiator is a phenolate being more active for the production of polycarbonates.  相似文献   

9.
Dinucleating ligands having two metal-binding sites bridged by an imidazolate moiety, Hbdpi, HMe(2)bdpi, and HMe(4)bdpi (Hbdpi = 4,5-bis(di(2-pyridylmethyl)aminomethyl)imidazole, HMe(2)bdpi = 4,5-bis((6-methyl-2-pyridylmethyl)(2-pyridylmethyl)aminomethyl)imidazole, HMe(4)bdpi = 4,5-bis(di(6-methyl-2-pyridylmethyl)aminomethyl)imidazole), have been designed and synthesized as model ligands for copper-zinc superoxide dismutase (Cu,Zn-SOD). The corresponding mononucleating ligands, MeIm(Py)(2), MeIm(Me)(1), and MeIm(Me)(2) (MeIm(Py)(2) = (1-methyl-4-imidazolylmethyl)bis(2-pyridylmethyl)amine, MeIm(Me)(1) = (1-methyl-4-imidazolylmethyl)(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine, MeIm(Me)(2) = (1-methyl-4-imidazolyl-methyl)bis(6-methyl-2-pyridylmethyl)amine), have also been synthesized for comparison. The imidazolate-bridged Cu(II)-Cu(II) homodinuclear complexes represented as [Cu(2)(bdpi)(CH(3)CN)(2)](ClO(4))(3).CH(3)CN.3H(2)O (1), [Cu(2)(Me(2)bdpi)(CH(3)CN)(2)](ClO(4))(3) (2), [Cu(2)(Me(4)bdpi)(H(2)O)(2)](ClO(4))(3).4H(2)O (3), a Cu(II)-Zn(II) heterodinuclear complex of the type of [CuZn(bdpi)(CH(3)CN)(2)](ClO(4))(3).2CH(3)CN (4), Cu(II) mononuclear complexes of [Cu(MeIm(Py)(2))(CH(3)CN)](ClO(4))(2).CH(3)CN (5), [Cu(MeIm(Me)(1))(CH(3)CN)](ClO(4))(2)( )()(6), and [Cu(MeIm(Me)(2))(CH(3)CN)](ClO(4))(2)( )()(7) have been synthesized and the structures of complexes 5-7 determined by X-ray crystallography. The complexes 1-7 have a pentacoordinate structure at each metal ion with the imidazolate or 1-methylimidazole nitrogen, two pyridine nitrogens, the tertiary amine nitrogen, and a solvent (CH(3)CN or H(2)O) which can be readily replaced by a substrate. The reactions between complexes 1-7 and hydrogen peroxide (H(2)O(2)) in the presence of a base at -80 degrees C yield green solutions which exhibit intense bands at 360-380 nm, consistent with the generation of hydroperoxo Cu(II) species in all cases. The resonance Raman spectra of all hydroperoxo intermediates at -80 degrees C exhibit a strong resonance-enhanced Raman band at 834-851 cm(-1), which shifts to 788-803 cm(-1) (Deltanu = 46 cm(-1)) when (18)O-labeled H(2)O(2) was used, which are assigned to the O-O stretching frequency of a hydroperoxo ion. The resonance Raman spectra of hydroperoxo adducts of complexes 2 and 6 show two Raman bands at 848 (802) and 834 (788), 851 (805), and 835 (789) cm(-1) (in the case of H(2)(18)O(2), Deltanu = 46 cm(-1)), respectively. The ESR spectra of all hydroperoxo complexes are quite close to those of the parent Cu(II) complexes except 6. The spectrum of 6 exhibits a mixture signal of trigonal-bipyramid and square-pyramid which is consistent with the results of resonance Raman spectrum.  相似文献   

10.
The compounds fac-(κ(3)-PDP)Mo(CO)(3) {1; PDP = 2-[[2-(1-(pyridin-2-ylmethyl)pyrrolidin-2-yl)pyrrolidin-1-yl]methyl]pyridine}, [(cis-β-PDP)Mo(NO)(CO)]PF(6) ([cis-β-3]PF(6)), [(cis-α-PDP)Mo(NO)(CO)]PF(6) ([cis-α-3]PF(6)), [(cis-α-PDP)Mo(NO)Br]PF(6) ([4]PF(6)), [(trans-PDP)Cu](BF(4))(2)·CH(3)CN ([5](BF(4))(2)·CH(3)CN), and [(trans-PDP)Cu](OSO(2)CF(3))(2) ([5](OSO(2)CF(3))(2)) have been synthesized and structurally characterized by single-crystal X-ray diffraction. These are the first reported complexes of PDP on metal centers other than iron(II). The observed configurations indicate a broader range of accessible PDP topologies than has been reported. The {(cis-α-PDP)Mo(NO)}(+) fragment is found to be less π-basic than the dearomatizing {Tp(MeIm)Mo(NO)} fragment [Tp = hydridotris(1-pyrazolyl)borato; MeIm = 1-methylimidazole].  相似文献   

11.
The "one-pot" synthesis and characterization of a large 28-mer macrocycle (H(4)L(2)) with oxamido units capable of complexing guest ions through oxygen or nitrogen donor atoms is reported. Single-crystal structure determination of H(8)L(2)(NO(3))(4) and (Cu(2)[H(2)L(2)](H(2)O)(2))(NO(3))(2) demonstrated that the macrocycle contains two sites capable of complexing two nitrate anions or two copper(II) ions, involving a large structural reorganization in the conformation of the macrocyclic framework on coordination of the copper(II) ions when compared to the nitrate. Electrochemical and magnetic susceptibility measurements on the dinuclear Cu(II) complex and the related mononuclear and trinuclear Cu(II) complexes derived from the related 14-mer macrocycle were carried out and illustrate the role of the oxamido groups in mediating metal-metal interaction and delocalization.  相似文献   

12.
X-ray structural and spectroscopic properties of a series of heterodinuclear d(8)-d(10) metal complexes [M'M' '(mu-dcpm)(2)(CN)(2)](+) containing d(8) Pt(II), Pd(II), or Ni(II) and d(10) Au(I), Ag(I), or Cu(I) ions with a dcpm bridging ligand have been studied (dcpm = bis(dicyclohexylphosphino)methane; M' = Pt, M' ' = Au 4, Ag 5, Cu, 6; M' ' = Au, M' = Pd 7, Ni 8). X-ray crystal analyses showed that the metal...metal distances in these heteronuclear metal complexes are shorter than the sum of van der Waals radii of the M' and M' ' atoms. The UV-vis absorption spectra of 4-6 display red-shifted intense absorption bands from the absorption spectra of the mononuclear trans-[Pt(phosphine)(2)(CN)(2)] and [M' '(phosphine)(2)](+) counterparts, attributable to metal-metal interactions. The resonance Raman spectra confirmed assignments of (1)[nd(sigma)-->(n + 1)p(sigma)] electronic transitions to the absorption bands at 317 and 331 nm in 4 and 6, respectively. The results of theoretical calculations at the MP2 level reveal an attractive interaction energy curve for the skewed [trans-Pt(PH(3))(2)(CN)(2)-Au(PH(3))(2)(+)] dimer. The interaction energy of Pt(II)-Au(I) was calculated to be ca. 0.45 ev.  相似文献   

13.
Four homodinuclear complexes of Ni(II)-Ni(II), Cu(II)-Cu(II), Co(II)-Co(II) and Co(III)-Co(II) and five heterodinuclear complexes of Co(III)-Zn(II), Co(III)-Cu(II), Co(III)-Ni(II), Cu(II)-Zn(II) and Zn(II)-Cu(II) with the octadentate Schiff base compartmental ligand 1,8-N-bis(3-carboxy)disalicylidene-3,6-diazaoctane-1,8-diamine (H4fsatrien) have been synthesized. The complexes have been characterized with the help of elemental analyses, molecular weights, molar conductances, magnetic susceptibilities and spectroscopic (UV-vis, IR, ESR) data. Cryomagnetic data also helped to elucidate the structural features of the Cu(II) complexes.  相似文献   

14.
The new ligand 2-pyridinyl-3-pyridinylmethanone (L) proves to be an excellent building block for the construction of single-strand helical architectures. A series of helical complexes have been synthesized by the reaction of L with various metal salts, in which L exhibits three kinds of coordination modes involving two kinds of bridging conformations, resulting in four types of single-strand helical chains. The counter anions in the series of 2(1) helical silver(I) complexes {[Ag(L)]X}(infinity)(X = NO(3), 1; PF(6), 2; BF(4), 3; ClO(4), 4; CF(3)CO(2), 5; CF(3)SO(3), 6) are fully or partially embedded inside the cylindrical helix, and the pitch length corresponds not only to the size of the anion but also to its manner of docking into the groove of the helix. Formation of the helical structure in {[Cu(L)(CH(3)CN)(H(2)O)(ClO(4))]ClO(4)}(infinity)(7) is driven by Ow-H...O (perchlorate) hydrogen bonding that leads to a stable triangular motif which rigidly fixes the configuration of the helix. In {[Co(L)(H(2)O)(3)](ClO(4))(2).2H(2)O}(infinity)(8) and {[Zn(L)(H(2)O)(3)](CF(3)SO(3))(2).H(2)O}(infinity)(9), similar helical chains without anion embedment suggest that the pitch length can be tuned by the size of metal cations. Notably, complex {[Ag(L)]CF(3)SO(3)}(infinity)(10), a conformational polymorph of , has a 4(1) helix induced by argentophilic interaction.  相似文献   

15.
Wang XS  Zhao H  Qu ZR  Ye Q  Zhang J  Xiong RG  You XZ  Fun HK 《Inorganic chemistry》2003,42(19):5786-5788
The reaction of Cu(I)(CH(3)CN)(4)BF(4) with 4-pyridylacrylic acid (4-HPYA) affords an unprecedented 8-fold interpenetrating diamondoid-like coordination polymer network [Cu(I)(3)(4-PYA)(2)(H(2)O)(BF(4)) ] (1) with a Cu(+)(4)(CO(2))(4) cluster as connecting node. The interpenetration in metal coordination polymers is the highest degree ever found within diamondoid nets containing a cluster as connecting note. Its fluorescent property was also reported.  相似文献   

16.
The purpose of this work was to characterise supercritical hydrofluorocarbons (HFC) that can be used as solvents for electrodeposition. The phase behaviour of CHF(3), CH(2)F(2), and CH(2)FCF(3) containing [NBu(n)(4)][BF(4)], [NBu(n)(4)][B{3,5-C(6)H(3)(CF(3))(2)}(4)] and Na[B{3,5-C(6)H(3)(CF(3))(2)}(4)] was studied and the conditions for forming a single supercritical phase established. Although all three HFCs are good solvents for [NBu(n)(4)][BF(4)] the results show that the CH(2)F(2) system has the lowest p(r) for dissolving a given amount of [NBu(n)(4)][BF(4)]. The solubility of Na[B{3,5-C(6)H(3)(CF(3))(2)}(4)] in CH(2)F(2) was found to be unexpectedly high. Studies of the phase behaviour of CH(2)F(2) containing [NBu(n)(4)][BF(4)] and [Cu(CH(3)CN)(4)][BF(4)] showed that the copper complex was unstable in the absence of CH(3)CN. For CHF(3), [Cu(hfac)(2)] was more soluble and more stable than [Cu(CH(3)CN)(4)][BF(4)] and only increased the phase-separation pressure by a moderate amount. Studies of the conductivity of [NBu(n)(4)][B(C(6)F(5))(4)], [NBu(n)(4)][B{3,5-C(6)H(3)(CF(3))(2)}(4)], [NR(f)Bu(n)(3)][B{3,5-C(6)H(3)(CF(3))(2)}(4)] (R(f) = (CH(2))(3)C(7)F(15)), and Na[B{3,5-C(6)H(3)(CF(3))(2)}(4)] were carried out in scCH(2)F(2). The results show that these salts are more conducting than [NBu(n)(4)][BF(4)] under the same conditions although the increase is much less significant than that reported in previous work in supercritical CO(2) + CH(3)CN. Consequently, either [NBu(n)(4)][BF(4)] or the corresponding BARF salts would be suitable background electrolytes for electrodeposition from scCH(2)F(2).  相似文献   

17.
Abe K  Matsufuji K  Ohba M  Okawa H 《Inorganic chemistry》2002,41(17):4461-4467
A phenol-based "end-off" compartmental ligand, 2-[N-[2-(dimethylamino)ethyl]iminomethyl]-6-[N,N-di(2-pyridylmethyl)aminomethyl]-4-methylphenol (HL), having a bidentate arm and a tridentate arm attached to the 2 and 6 positions of the phenolic ring, has afforded the following heterodinuclear M(a)(II)M(b)(II) complexes: [CuM(L)(AcO)(2)]ClO(4) (M = Mn (1), Fe (2), Co (3), Ni (4), Zn (5)), [ZnM(L)(AcO)(2)]ClO(4) (M = Co (6), Ni (7)), and [CuNi(L)(AcO)(NCS)(2)] (8). 1.MeOH (1'), 2.MeOH (2'), 3.MeOH (3'), 4.MeOH (4'), 5.MeOH (5'), and 7.MeOH (7') are isostructural and have a heterodinuclear core bridged by the phenolic oxygen atom of L(-) and two acetate groups. In 1'-5' the Cu(II) is bound to the bidentate arm and has a square-pyramidal geometry with one acetate oxygen at the apical site. The M(II) is bound to the tridentate arm and has a six-coordinate geometry together with two acetate oxygen atoms. In the case of 7' the Zn is bound to the bidentate arm and the Ni is bound to the tridentate arm. 8.2-PrOH (8') has a dinuclear core bridged by the phenolic oxygen atom of L(-) and one acetate group. The Cu bound to the bidentate arm has a square-pyramidal geometry with an isothiocyanate group at the apical site. The Ni bound to the tridentate arm has a six-coordinate geometry with further coordination of an isothiocyanate group. The site specificity of the metal ions is discussed together with the crystal structure of [Cu(4)(L)(2)(AcO)(3)](ClO(4))(3).H(2)O (9) prepared in this work.  相似文献   

18.
When the ligand 1,4,5-triazanaphthalene (abbreviated as tan) is reacted with Cu(II) BF(4)(-) and ClO(4)(-) salts, a variety of mononuclear compounds has been found, all with the [Cu(tan)(4)] unit and varying amounts of weakly coordinating axial ligands and lattice solvents. Reproducible compounds formed include two purple compounds, analyzing as [Cu(tan)(4)](ClO(4))(2)(CH(3)OH)(2)(H(2)O) (1) and [Cu(tan)(4)](BF(4))(2)(CH(3)OH)(1.5)(H(2)O) (3), and two blue compounds, analyzing as [Cu(tan)(4)](ClO(4))(2)(H(2)O)(2) (2) and [Cu(tan)(4)](2)(BF(4))(2)(H(2)O)(2) (4). Upon standing at room temperature, red-coloured, mixed-valence dinuclear-based 3D coordination polymers are formed by conversion of the purple/blue products, of which [Cu(2)(tan)(4)](n)(BF(4))(3n) (5) and the isomorphic methanol-water adduct [Cu(tan)(4)](n)(BF(4))(3n)(CH(3)OH)(n)(H(2)O)(5n) (5A) are presented in this paper. In addition a fully reduced dinuclear Cu(I) compound of formula [Cu(2)(tan)(3)(ClO(4))(2)] (7) has been observed, and structurally characterized, as a rare three-blade propeller structure, with a Cu-Cu distance of 2.504 ?.  相似文献   

19.
A series of structurally characterized copper complexes of two pyridazine-spaced cryptands in redox states + (I,I), (II,I), (II), (II,II) are reported. The hexaimine cryptand L(I) [formed by the 2 + 3 condensation of 3,6-diformylpyridazine with tris(2-aminoethyl)amine (tren)] is able to accommodate two non-stereochemically demanding copper(I) ions, resulting in [Cu(I)(2)L(I)](BF(4))(2) 1, or one stereochemically demanding copper(II) ion, resulting in [Cu(II)L(I)()](BF(4))(2) 3. Complex 3 crystallizes in two forms, 3a and 3b, with differing copper(II) ion coordination geometries. Addition of copper(I) to the monometallic complex 3 results in the mixed-valence complex [Cu(I)Cu(II)L(I)](X)(3) (X = PF(6)(-), 2a; X = BF(4)(-), 2b) which is well stabilized within this cryptand as indicated by electrochemical studies (K(com) = 2.1 x 10(11)). The structurally characterized, octaamine cryptand L(A), prepared by sodium borohydride reduction of L(I), is more flexible than L(I) and can accommodate two stereochemically demanding copper(II) ions, generating the dicopper(II) cryptate [Cu(II)(2)L(A)](BF(4))(4) 4. Electrochemical studies indicate that L(A) stabilizes the copper(II) oxidation state more effectively than L(I); no copper redox state lower than II,II has been isolated in the solid state using this ligand.  相似文献   

20.
A series of copper(II) complexes with substituted phenanthroline ligands has been synthesized and characterized electronically and structurally. The compounds that have been prepared include the monosubstituted ligand complexes of the general formula [Cu(5-R-phen)(2)(CH(3)CN)](BF(4))(2), where R = NO(2), Cl, H, or Me, and the disubstituted ligand complex [Cu(5,6-Me(2)-phen)(2)(CH(3)CN)](BF(4))(2). The complexes [Cu(5-NO(2)-phen)(2)(CH(3)CN](BF(4))(2) (1), [Cu(5-Cl-phen)(2)(CH(3)CN)](BF(4))(2) (2), [Cu(o-phen)(2)(CH(3)CN)](BF(4))(2) (3), and [Cu(5-Me-phen)(2)(CH(3)CN)](BF(4))(2) (4) each crystallize in the space group C2/c with compounds 1, 2, and 4 comprising an isomorphous set. The disubstituted complex [Cu(5,6-Me(2)-phen)(2)(CH(3)CN)](BF(4))(2) (5) crystallizes in the space group P2(1)/c. Each structure is characterized by a distorted trigonal bipyramidal arrangement of ligands around the central copper atom with approximate or exact C(2) symmetry. The progression from electron-withdrawing to electron-donating substituents on the phenanthroline ligands correlates with less accessible reduction potentials for the bis-chelate complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号