首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(methylmethacrylate) (PMMA) microchip electrophoresis of sodium dodecyl sulfate-protein complexes (SDS-PC) using linear-poly(acrylamide) (L-PA) as a separation matrix was investigated. Prior to electrophoresis, channel walls of PMMA were modified with methylcellulose (MC) to prevent adsorption between channel walls and SDS-PC. Size-based protein separation (SBPS) was successfully performed using the MC-coated microchips with Ferguson plot-fittings. The entangled L-PA solution provided high resolution of peaks of SDS-PC when the concentration of L-PA was increased. Some investigations into the separation mechanism, such as the plot of the logarithm of mobility of each SDS-PC versus the logarithm of the molecular weight of the complex exhibiting linear behavior, indicated that the separation mechanism was dependent on mass discrimination, in accordance with Ogston model.  相似文献   

2.
Electrophoretic migration of proteins in semidilute polymer solutions   总被引:1,自引:0,他引:1  
We present a systematic study of the electrophoretic migration of 10-200 kDa protein fragments in dilute-polymer solutions using microfluidic chips. The electrophoretic mobility and dispersion of protein samples were measured in a series of monodisperse polydimethylacrylamide (PDMA) polymers of different molecular masses (243, 443, and 764 kDa, polydispersivity index <2) of varying concentration. The polymer solutions were characterized using rheometry. Prior to loading onto the microchip, the polymer solution was mixed with known concentrations of SDS (SDS) surfactant and a staining dye. SDS-denatured protein samples were electrokinetically injected, separated, and detected in the microchip using electric fields ranging from 100 to 300 V/cm. Our results show that the electrophoretic mobility of protein fragments decreases exponentially with the concentration c of the polymer solution. The mobility was found to decrease logarithmically with the molecular weight of the protein fragment. In addition, the mobility was found to be independent of the electric field in the separation channel. The dispersion is relatively independent of polymer concentration and it first increases with protein size and then decreases with a maximum at about 45 kDa. The resolution power of the device decreases with concentration of the PDMA solution but it is always better than 10% of the protein size. The protein migration does not seem to correspond to the Ogston or the reptation models. A semiempirical expression for mobility given by van Winkle fits the data very well.  相似文献   

3.
Chen Z  Zhang L  Chen G 《Electrophoresis》2007,28(14):2466-2473
A method based on the in situ polymerization of methyl methacrylate (MMA) has been developed for the rapid fabrication of a novel separation platform, fiber electrophoresis microchip. To demonstrate the concept, prepolymerized MMA molding solution containing a UV initiator was sandwiched between a poly(methyl methacrylate) (PMMA) cover plate and a PMMA base plate bearing glycerol-permeated fiberglass bundles and was exposed to UV light. During the UV-initiated polymerization, the fiberglass bundles were embedded in the PMMA substrate to form fiberglass-packed microchannels. When the glycerol in the fiberglass bundles was flushed away with water, the obtained porous fiberglass-packed channels could be employed to perform electrophoresis separation. Scanning electron micrographs (SEMs) and microscopic images offered insights into the fiber electrophoresis microchip. The analytical performance of the novel microchip has been demonstrated by separating and detecting dopamine and catechol in connection with end-column amperometric detection. The fiber-based microchips can be fabricated by the new approach without the need for complicated and expensive lithography-based microfabrication techniques, indicating great promise for the low-cost production of microchips, and should find a wide range of applications.  相似文献   

4.
A simple method based on electric heating wires has been developed for the rapid fabrication of poly(methyl methacrylate) (PMMA) electrophoresis microchips in ordinary laboratories without the need for microfabrication facilities. A piece of stretched electric heating wire placed across the length of a PMMA plate along its midline was sandwiched between two microscope slides under pressure. Subsequently, alternating current was allowed to pass through the wire to generate heat to emboss a separation microchannel on the PMMA separation channel plate at room temperature. The injection channel was fabricated using the same procedure on a PMMA sheet that was perpendicular to the separation channel. The complete microchip was obtained by bonding the separation channel plate to the injection channel sheet, sealing the channels inside. The electric heating wires used in this work not only generated heat; they also served as templates for embossing the microchannels. The prepared microfluidic microchips have been successfully employed in the electrophoresis separation and detection of ions in connection with contactless conductivity detection.  相似文献   

5.
Nagata H  Tabuchi M  Hirano K  Baba Y 《Electrophoresis》2005,26(14):2687-2691
In this paper, we describe a method for size-based electrophoretic separation of sodium dodecyl sulfate (SDS)-protein complexes on a polymethyl methacrylate (PMMA) microchip, using a separation buffer solution containing SDS and linear polyacrylamide as a sieving matrix. We developed optimum conditions under which protein separations can be performed, using polyethylene glycol (PEG)-coated polymer microchips and electrokinetic sample injection. We studied the performance of protein separations on the PEG-coated PMMA microchip. The electrophoretic separation of proteins (21.5-116.0 kDa) was completed with separation lengths of 3 mm, achieved within 8 s on the PEG-coated microchip. This high-speed method may be applied to protein separations over a large range of molecular weight, making the PEG-coated microchip approach applicable to high-speed proteome analysis systems.  相似文献   

6.
Okada H  Kaji N  Tokeshi M  Baba Y 《Electrophoresis》2007,28(24):4582-4589
We demonstrate channel wall coating using a cellulose derivative on a poly-(methyl methacrylate) (PMMA) CE microchip to eliminate EOF disturbing protein separation. The channel walls were modified by preconditioning with a solution containing the cellulose derivative and then thermally evaporating the solution to produce hydrophilic channel walls which prevent adsorption of analytes via a hydrophobic interaction. When the PMMA substrate was coated with the cellulose derivative hydroxypropylmethylcellulose (HPMC) 90SH, the water contact angle on the coated substrate was decreased (up to 15 degrees ) and EOF was significantly suppressed (up to 4.0 x 10(-6) cm2.V(-1)s(-1)). Three proteins (20.5, 68.0, and 114.6 kDa) were successfully separated on the 0.15% HPMC 90SH-coated channel walls with good reproducibility of migration time (RSD <1.75%) and high efficiency (theoretical plate number per meter: 2.62 x 10(5)).  相似文献   

7.
微流控芯片技术因具有微量、快速、高效和高通量等特点,已成为分析化学领域中的研究热点之一.在微流控芯片中,最常见的可用作芯片的材料为玻璃、石英和各种塑料.玻璃和石英有很好的电渗性和光学性质,可采用标准的刻蚀工艺加工和用化学方法进行表面改性,但加工成本较高,封接难度较大.  相似文献   

8.
We developed a novel channel wall coating on a poly(methyl methacrylate) (PMMA) microchip using methylcellulose (MC) as a coating reagent to suppress electroosmotic flow (EOF) following the strong analytes adsorption via hydrophobic interaction with channel walls of PMMA. Our coating was obtained by first rinsing channel walls with MC-containing aqueous solution followed by evaporation. The coating made the hydrophilic channel wall lowering EOF by two orders of magnitude (1.2 x 10(-5)cm(2)V(-1)s(-1)) as well as reducing the hydrophobic adsorption. On the coated channel walls, we successfully separated sodium dodecyl sulfate-protein complexes with high reproducibility and efficiency using dextran as a lower viscosity protein separation medium.  相似文献   

9.
Liu D  Zhou X  Zhong R  Ye N  Chang G  Xiong W  Mei X  Lin B 《Talanta》2006,68(3):616-622
Microchip electrophoresis is a promising technique for analysis of bio-molecules. It has the advantages of fast analysis, high sensitivity, high resolution and low-cost of samples. Plastic chip has the potential of mass production for clinical use for its advantages in biocompatibility and low cost. In this work, the method for fabrication of poly(methyl methacrylate) (PMMA) chip was described, and conditions for DNA separation were investigated with the chip. The PMMA microchip was used for detection of multiplex PCR products of 18 and 36 cases with SARS and hepatitis B virus infection under optimized separation conditions. Microchip electrophoresis showed higher sensitivity, higher resolution and less time consumption when compared with gel electrophoresis. The microchip electrophoresis with PMMA chip provided a rapid, sensitive and reliable method for analysis of multiplex PCR products.  相似文献   

10.
This work describes the SDS-CGE of proteins carried out in microchannels made of the negative photoresist EPON SU-8. Embedded electrophoretic microchannels have been fabricated with a multilayer technology based on bonding and releasing steps of stacked SU-8 films. This technology allows the monolithic integration of the electrodes in the device. A high wafer fabrication yield and mass production compatibility guarantees low costs and high reliability. A poly(methyl methacrylate) (PMMA) packaging allows an easy setup and replacement of the device for electrophoresis experiments. In addition, the wire-bonding step is avoided. The electrophoretic mobilities of four proteins have been measured in microchannels filled with polyacrylamide. Different pore sizes have been tested obtaining their Ferguson plots. Finally, a separation of two proteins (20 and 36 kDa) has been carried out confirming that this novel device is suitable for protein separation. A resolution of 2.75 is obtained. This is the first time that this SU-8 microfluidic technology has been validated for SDS-CGE of proteins. This technology offers better separation performance than glass channels, at lower costs and with an easy packaging procedure.  相似文献   

11.
We explore the design and operation of an optical-tweezers electrophoresis apparatus to resolve polymer adsorption dynamics onto a single micro-sphere in a micro-fluidic environment. Our model system represents a broader class of micro-fluidic electrophoresis experiments for biosensing and fundamental colloid and surface science diagnostics. We track the adsorption of 100 kDa poly(ethylene oxide) homopolymer onto a colloidal silica sphere that is optically trapped in a crossed parallel-plate micro-channel. The adsorption dynamics are probed on the ~1 μm particle length scale with ~1 s temporal resolution. Because the particle electrophoretic mobility and channel electro-osmotic flow are exquisitely sensitive to the polymer layer hydrodynamic thickness, particle dynamics can be complicated by polymer adsorption onto the micro-channel walls. Nevertheless, using experiments and a theoretical model of electro-osmotic flow in channels with non-uniform wall ζ-potentials, we show that such influences can be mitigated by adopting a symmetrical flow configuration. The equilibrium hydrodynamic layer thickness of 100 kDa poly(ethylene oxide) on colloidal silica is ~10 nm at polymer concentrations ?10 ppm (weight percent), with the dynamics reflecting polymer solution concentration, flow rate, and polydispersity.  相似文献   

12.
Lu JJ  Liu S 《Electrophoresis》2006,27(19):3764-3771
Surface derivatization plays an important role in microchip electrophoresis. It not only enhances the resolution, but also improves the reproducibility. So far, the most popularly used derivatization method for glass microchannels is to covalently attach a layer of linear polyacrylamide (LPA) to the channel surfaces. However, LPA coating has two problems: incomplete coverage and limited lifetime. To address these issues, we have recently developed a cross-linked polyacrylamide (CPA) derivatization protocol and demonstrated it for high-resolution protein separations by CIEF, CGE, and CZE. In this report, we used this protocol to coat microchip channels and exhibited the reliability and robustness of CPA coating for microchip electrophoresis of DNA molecules. dsDNA fragments were used as our test samples. High resolutions were obtained for fragments ranging from 100 bp to 10 kpb. After more than 800 runs, the CPA-coated microchannels still performed well and comparable resolutions were maintained throughout these runs.  相似文献   

13.
The use of CO(2) laser ablation for the patterning of capillary electrophoresis (CE) microchannels in poly(dimethylsiloxane)(PDMS) is described. Low-cost polymer devices were produced using a relatively inexpensive CO(2) laser system that facilitated rapid patterning and ablation of microchannels. Device designs were created using a commercially available software package. The effects of PDMS thickness, laser focusing, power, and speed on the resulting channel dimensions were investigated. Using optimized settings, the smallest channels that could be produced averaged 33 microm in depth (11.1% RSD, N= 6) and 110 microm in width (5.7% RSD, N= 6). The use of a PDMS substrate allowed reversible sealing of microchip components at room temperature without the need for cleanroom facilities. Using a layer of pre-cured polymer, devices were designed, ablated, and assembled within minutes. The final devices were used for microchip CE separation and detection of the fluorescently labeled neurotransmitters aspartate and glutamate.  相似文献   

14.
Zhang Y  Ping G  Kaji N  Tokeshi M  Baba Y 《Electrophoresis》2007,28(18):3308-3314
We describe a microchip electrophoresis (MCE) method for the assay of unsaturated disaccharides of chondroitin sulfates, dermatan sulfates, and hyaluronic acid (HA). Poly(vinyl alcohol) (PVA) could be irreversibly adsorbed onto poly(methyl methacrylate) (PMMA) substrates and this approach was applicable for dynamic coating. The characteristics of the PMMA surface with PVA coating were evaluated in terms of the wettability, EOF, and adsorption of 2-aminoacridone (AMAC)-labeled disaccharide. The water contact angle decreased from 73 degrees on a pristine PMMA surface to 37.5 degrees on a PVA-coated surface, indicating that the PVA coating increased hydrophilicity. EOF was reduced approximately twofold and was relatively stable. Scanning electron microscopy and fluorescence microscopy images showed that adsorption of AMAC-labeled disaccharides was dramatically suppressed. Using the PVA coating, baseline separation of two pairs of glycosaminoglycan (GAG) disaccharide isomers, DeltaDi-diS(B)/DeltaDi-diS(D) and DeltaDi-0S/DeltaDi-HA, was achieved in Tris-borate buffer within 130 s by MCE.  相似文献   

15.
Simultaneous electrophoresis of both native and Sodium dodecyl sulfate (SDS) proteins was observed on a single microchip within 20 min. The capillary array prevented lateral diffusion of SDS components and avoided cross contamination of native protein samples. The planar sputtered electrode format provided a more uniform distribution of separation voltage into each of the 36 parallel microchannel capillaries than platinum wire electrodes commonly used in conventional electrophoresis. The customized geometry of the stacking capillary machined into the cover plate of the microchip facilitated reproducible sample injection without the requirement for stacking gel. Polyimide served as a mask and facilitated insulation of the anode and cathode to prevent electrode lift off and deterioration during continuous electrophoresis, even at a constant current of 8 mA. Improved protein separation was observed during capillary electrophoresis at lower currents. Ferguson plot analysis confirmed the electrophoretic mobility of native globular proteins in accordance with their charge and size. Corresponding Ferguson plot analysis of SDS-associated proteins on the same chip confirmed separation of marker proteins according to their molecular weight.  相似文献   

16.
We have developed a new method for the high-speed separation and high-sensitivity detection of complex oligosaccharides based on microchip electrophoresis (nu-CE) with light-emitting diode (LED) confocal fluorescence detection. Oligosaccharides labeled with 8-aminopyrene-1,3,6-trisulfonate (APTS) were found to strongly adsorb to the surface of polymethylmethacrylate (PMMA) microchips. Accordingly, three classes of major dynamic coating additives were systematically investigated, and cellulose derivatives were found to specifically suppress such adsorption and allow high-performance separation on PMMA chips. Additive concentration, buffer pH and applied field strength were found to be key factors in the high-performance separation& of APTS-labeled oligosaccharides on PMMA chips. Under optimal conditions, 15 oligosaccharides in dextrin hydrolysate can be separated within 45 s with an electrophoretic separation efficiency of over 400 000 theoretical plates per meter. The relative standard deviation (RSD) values of migration times of fourteen oligosaccharides were less than 0.50% between six different channels, and the detection limit for APTS-labeled glucose was about 1.98 x 10(-8) mol/L or 8.61 amol with a signal-to-noise ratio (S/N) of 3. The high speed, high efficiency and high sensitivity of this micro-CE-based method indicate that it can be widely applied to analysis of complex oligosaccharides.  相似文献   

17.
Sun Y  Kwok YC  Nguyen NT 《Electrophoresis》2007,28(24):4765-4768
Joule heating generated in CE microchips is known to affect temperature gradient, electrophoretic mobility, diffusion of analytes, and ultimately the efficiency and reproducibility of the separation. One way of reducing the effect of Joule heating is to decrease the cross-section area of microchannels. Currently, due to the limit of fabrication technique and detection apparatus, the typical dimensions of CE microchannels are in the range of 50-200 microm. In this paper, we propose a novel approach of performing microchip CE in a bundle of extremely narrow channels by using photonic crystal fiber (PCF) as separation column. The PCF was simply encapsulated in a poly(methyl methacrylate) (PMMA) microchannel right after a T-shaped injector. CE was simultaneously but independently carried out in 54 narrow capillaries, each capillary with diameter of 3.7 microm. The capillary bundle could sustain high electric field strength up to 1000 V/cm due to efficient heat dissipation, thus faster and enhanced separation was attained.  相似文献   

18.
This paper deals with dynamic coating of the microchannels fabricated on poly(methyl methacrylate) (PMMA) chips and DNA separation by microchip electrophoresis (MCE). After testing a number of polymers, including 2-hydroxyethyl cellulose, hydroxypropylmethyl cellulose, different sizes of poly(ethylene oxide) (PEO), and poly(vinyl pyrrolidone) (PVP), we found that coating of the PMMA microchannels with PEO(Mr = 6.0 x 10(5) g/mol) on the first layer is essential to minimize the interaction of DNA with PMMA surface. To achieve high efficiency, multilayer coating of PMMA chips with PEO, PVP, and PEO containing gold nanoparticles [PEO(GNP)] is important. A 2-(PEO-PVP)-PEO(GNP) PMMA chip, which was repeatedly coated with 1.0% PEO and 5.0% PVP twice, and then coated with 0.75% PEO(GNP) each for 30 min, provided a high efficiency (up to 1.7 x 10(6) plates/m) for the separation of DNA markers V (pBR 322/HaeIII digest) and VI (pBR 328/BgiI digest and pBR 328/HinfI digest) when using 0.75% PEO(GNP). With such a high efficiency, we demonstrated the separation of hsp65 gene fragments of Mycobacterium HaeIII digests by MCE within 90 s. The advantages of this approach to DNA analysis include ease of filling the microchannel with 0.75% PEO(GNP), rapidity, and reproducibility.  相似文献   

19.
This report describes the incorporation of an alkyl maltoside detergent in two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) sample lysis buffer in order to improve resolution of protein patterns separated by nonequilibrium pH gradient electrophoresis. Membrane-associated proteins with alkaline isoelectric points form horizontal streaks on two-dimensional electrophoretograms when solubilized with conventional nonionic detergent. Dodecyl maltoside enhances protein delipidation during solubilization and improves pattern resolution and protein mobility.  相似文献   

20.
Xu F  Baba Y 《Electrophoresis》2004,25(14):2332-2345
We give an overview of recent development of low-viscosity polymer solutions and entropic trapping networks for double-stranded DNA (dsDNA) separations by conventional capillary electrophoresis and microchip electrophoresis. Theoretical models for describing separation mechanisms, commonly used noncross-linked polymer solutions, thermoresponsive (viscosity-adjustable) polymer solutions, and novel entropic trapping networks are included. The thermoresponsive polymer solutions can be loaded at one temperature into microchannels at lower viscosities, and used in separation at another temperature at entanglement threshold concentrations and higher viscosities. The entropic-based separations use only arrays of regular obstacles acting as size-separations and do not need viscous polymer solutions. These progresses have potential in integration to automated capillary and microfluidic chip systems, enabling better reusability of separation microchannels, much shorter DNA separation times, and higher reproducibility due to less matrix degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号