首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In this paper, we propose an efficient multi-party quantum secret sharing scheme based on GHZ entangled state. The participants in this scheme are divided into two groups, and share secrets as a group. There is no need to exchange any measurement information between the two groups, reducing the security problems caused by the communication process. Each participant holds one particle from each GHZ state; it can be found that the particles of each GHZ state are related after measuring them, and the eavesdropping detection can detect external attacks based on this characteristic. Furthermore, since the participants within the two groups encode the measured particles, they can recover the same secrets. Security analysis shows that the protocol can resist the intercept-and-resend attack and entanglement measurement attack, and the simulation results show that the probability of an external attacker being detected is proportional to the amount of information he can obtain. Compared with the existing protocols, this proposed protocol is more secure, has less quantum resources and is more practical.  相似文献   

2.
3.
利用量子力学中纠缠态的非定域关联性,提出了一种基于GHZ态的星型量子通信网络方案,该方案能有效地对用户身份进行认证,提高信息传输的安全性,实现任意站点间的量子通信.  相似文献   

4.
As a multi-particle entangled state, the Greenberger–Horne–Zeilinger (GHZ) state plays an important role in quantum theory and applications. In this study, we propose a flexible multi-user measurement-device-independent quantum key distribution (MDI-QKD) scheme based on a GHZ entangled state. Our scheme can distribute quantum keys among multiple users while being resistant to detection attacks. Our simulation results show that the secure distance between each user and the measurement device can reach more than 280 km while reducing the complexity of the quantum network. Additionally, we propose a method to expand our scheme to a multi-node with multi-user network, which can further enhance the communication distance between the users at different nodes.  相似文献   

5.
Based on the delocalized entanglement correlation of GHZ state in quantum information theory, a three-party stop-wait quantum communication protocol for data link layer is presented. When three sites, Alice, Bob and Charlie, communicate in data link layer, data frame is sent to Bob and Charlie by Alice. When receiving the data frame within the set time, the receivers, Bob and Charlie, return to quantum acknowledgment frames or quantum negative acknowledgement frames via quantum channel. In the proposed protocol, the sender Alice can simultaneously receive and deal with quantum acknowledgment (QACK) frames or quantum negative acknowledgement (QNACK) frames from Bob and Charlie. And due to the transience of transferring quantum information, propagation delay and processing delay among three sites are reduced. As a result, the minimum time span between two successfully delivered data frames can be significantly reduced, the communication time is shortened. It is shown that the proposed protocol enhances the maximum throughout effectively and improves the communication efficiency for data link layer in a multicast communication network.  相似文献   

6.
This study proposes a pioneering protocol for teleporting an arbitrary single particle state and simultaneously performing a rotation operation on that particle. There are protocols for either only teleporting particles or only remotely controlling quantum particles. If one has to remotely control a teleported quantum, then he/she has to first do the quantum teleportation and then perform the remote control on the teleported quantum. Both operations were done separately on two sets of entanglements. However, this intuitive solution is inefficient because many resources are wasted. Therefore, the study attempts to complete both operations using only one Greenberger-Horne-Zeilinger (GHZ) state.  相似文献   

7.
We present a novel scheme for deterministic secure quantum communication by using three-qubit Greenberger-Horne-Zeilinger (GHZ) state as quantum channel. It will be shown that secret messages can be encoded by employing four two-unitary collective operations, and decoded by Bell-basis measurements and some additional classical information. Security of the communication can be ensured by the order rearrangement of photon pairs techniques and the decoy photon checking technique. It has a high capacity as each GHZ state can carry two bits of information, and has a high intrinsic efficiency because almost all the instances except for the decoy checking photons (its number is negligible) are useful. Furthermore, this protocol is feasible with the present-day technique.  相似文献   

8.
Influence of Noises on Remote State Preparation Using GHZ State   总被引:1,自引:0,他引:1  
Using a quantum channel consisting of a GHZ state exposed to noisy environment, we investigate how to remotely prepare an entangled state and a qubit state, respectively. By solving the master equation in the Lindblad form, the influence of the various types of noises on the GHZ state is first discussed. Then we use the fidelity to describe how close the remotely prepared state and the initial state are. Our results show that the fidelity is a function of the decoherence rates and the angles of the initial state. It is found that for each of the two RSP schemes, the influence of the noise acting simultaneously in x, y, and z directions on the average fidelity is the strongest while the influence of the noise acting in x or z direction on the average fidelity is relatively weaker.  相似文献   

9.
Using a quantum channel consisting of a GHZ state exposed to noisy environment, we investigate how to remotely prepare an entangled state and a qubit state, respectively. By solving the master equation in the Lindblad form, the influence of the various types of noises on the GHZ state is first discussed. Then we use the fidelity to describe how close the remotely prepared state and the initial state are. Our results show that the fidelity is a function of the decoherence rates and the angles of the initial state. It is found that for each of the two RSP schemes, the influence of the noise acting simultaneously in x, y, and z directions on the average fidelity is the strongest while the influence of the noise acting in x or z direction on the average fidelity is relatively weaker.  相似文献   

10.
We present a new quantum private comparison protocol based on the three-particle GHZ states. In this protocol, we prepare two types of GHZ states and use their entanglement properties to encode and compare the private information of X and Y. We also discuss that our protocol can withstand all various kinds of outside attacks and participant attacks.  相似文献   

11.
提出一个受控的量子确定性安全通信方案,在通信过程中,纠缠GHZ态用作量子信道,秘密信息的编码和破解是通过受控的量子纠缠交换和局域酉变换实现的.此方案是安全的.关于此方案安全性的证明和两步方案[Phys.Rev.A 68 042317]的安全性是一样的.此方案也可以推广到有多方控制者参与的情形.  相似文献   

12.
International Journal of Theoretical Physics - In this paper we propose two verifiable threshold quantum secret sharing protocols with d-dimensional GHZ state. In the proposed protocol, the dealer...  相似文献   

13.

Controlled quantum teleportation of superposed coherent states using GHZ entangled 3-mode coherent states is studied. Proposed scheme can be implemented experimentally using linear optical components such as a symmetric lossless beam splitter, two phase-shifters and two photon counters. Fidelity is found close to unity for appreciable mean number of photons in coherent states and is 0.99 for mean photon number equal to two.

  相似文献   

14.
15.
A controlled bidirectional quantum secret direct communication scheme is proposed by using a Greenberger- Horne-Zeilinger (GHZ) state. In the scheme, two users can exchange their secret messages simultaneously with a set of devices under the control of a third party. The security of the scheme is analysed and confirmed.  相似文献   

16.
利用一个(N 1)粒子部分纠缠Greenberger-Home-Zeilinger(GHZ)态作为量子通道,提出了概率远程制备N粒子GHZ态的两个方案.我们考虑了怎样远程制备一个任意的GHZ态,即两个参数α和β都是复数的情况.此外,计算了远程制备总的成功概率和需要的经典信息量.  相似文献   

17.
Controlled superdense coding with multi-particle GHZ state and multi-particles GHZ-class state via local measurement are explicitly exploited in this article. The amount of information transmitted from the senders to the receiver is controlled by the supervisor via his local measurement. It is shown that the amount of information is determined by the supervisor’s measurement in the former case of GHZ state, and by the supervisor’s measurement and the coefficients of the original GHZ-class state in the latter case.  相似文献   

18.
19.
GAO Gan 《理论物理通讯》2008,50(2):368-370
We propose a quantum superdense coding secure communication scheme by using GHZ state. This scheme combines the ideas of quantum superdense coding and sequence transmission. Its distinct advantage is high source capacity. In addition, in checking eavesdropping, we need not to destroy quantum entanglement.  相似文献   

20.
There are some quantum private comparison (QPC) schemes proposed previously. In this paper we study these QPC protocols in non-ideal scenario and find that they are not secure there. For resolving the problem, we propose a QPC scheme which could be performed in practical scenario. By the use of Greenberger-Horne-Zeilinger (GHZ) states and error-correcting code (ECC), the scheme has the capability of fault-tolerate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号