首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polymerization of 2-ethylhexyl acrylate (EtHA) initiated with lithium-tert-butoxide (t-BuOLi) in tetrahydrofuran (THF) and in the temperature range between ?60 and 20°C was investigated. The reaction rate is distinctly temperature-dependent and at ?60°C is already very low, similarly to the polymerization of methacrylates. Molecular weights of the polymers thus formed, particularly at higher temperatures, are inversely proportional to conversion of the monomer due to the slow initiation reaction. This is documented by the low consumption of alkoxide even at long reaction times, which also depends on the reaction temperature. At higher temperatures the polymerization stops spontaneously, due to the greater extent of autotermination reactions. The weak initiating efficiency of the alkoxide decreases still more with decreasing concentration of the monomer during the polymerization, as confirmed by the concentration dependence of the reaction rate in toluene at ?20°C. The results suggest a negligible initiating effect of alkoxides in complex bases, particularly at lower polymerization temperatures. © 1992 John Wiley & Sons, Inc.  相似文献   

2.
2,2-Dibutyl-2-stanna-1,3-dioxepane (DSDOP) was used as cyclic initiator for the polymerization of trimethylene carbonate (TMC). The polymerizations were either conducted in concentrated chlorobenzene solution at 50 and 80°C or in bulk at 60 and 120°C. With monomer/initiator ratios ≤100 the conversion was complete within 2 h at 80°C and within 12 h at 50°C. Variation of the reaction time revealed that the rapid polymerization is followed by a relatively rapid (backbiting) degradation even at 80°C. The polymerizations in bulk at 60°C were somewhat slower than those at 80°C in solution, but the influence of degradation reactions was less pronounced. With optimized reaction time the number average molecular weight (Mn) roughly parallels the monomer/initiator ratio and Mn's up to 100,000 were obtained. In contrast to a classical living polymerization broader polydispersities (1.5–1.7) were found. In the case of 5,5-dimethyltrimethylene carbonate rapid degradation and chain transfer reactions prevented the formation of high molecular weight polymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2179–2189, 1999  相似文献   

3.
Chain transfer constants (Ctr) for thiuram disulfide (TD) groups, included in the backbone of polydimethylsiloxane (PDMS) of different chain lengths, in methyl methacrylate (MMA) and styrene (St) were determined from measurements of the degree of polymerization. Two methods were used. The first consisted of using the initiation and transfer properties of the thiuram disulfides groups, and the second, of using a more efficient free radical initiator than TD groups, in which case the former behaves only as a transfer agent. In both the methods, the Ctr of TD was evaluated in bulk polymerization of MMA at 60, 70, 80, and 90°C. Using the first method, the Ctr of TD was measured also in solution polymerization of MMA in toluene at 100°C and, with the second one, in bulk polymerization of styrene at 60, 80, and 90°C. PDMS-based macrothiuram disulfide (macroiniferter) behaves as an “azeotropic” transfer agent for MMA and styrene at 125°C and 110°C, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
The polymerization of vinyl monomer initiated by polyethyleneglycol (PEG) in aqueous solution was carried out at 85°C with shaking. Acrylonitrile (AN), methyl methacrylate (MMA), and methacrylic acid were polymerized by PEG–300 (M?n = 300), whereas styrene was not. The effects of the amounts of monomer and PEG, the molecular weight of PEG, and the hydrophobic group at the end of PEG molecule on the polymerization were studied. The selectivity of vinyl monomer and the effect of the hydrophobic group are discussed according to “the concept of hard and soft hydrophobic areas and monomers.” The kinetics of the polymerization was investigated. The overall activation energy in the polymerization of AN was estimated as 37.9 kJ mol?1. The polymerization was effected by a radical mechanism.  相似文献   

5.
The effect of temperature on the four-center type photopolymerization has been investigated for p-phenylenediacrylic acid diethyl ester over a wide temperature range including crystal transition point (56°C) and melting point (96°C) of monomer. With the elevation of temperature between ?50 and 15°C, the polymerization rate in the initial stage increased and the degree of polymerization decreased monotonously, while the rate in the later stage decreased above ?25°C. With irradiation at above 25°C, the monomer crystals became sticky, and the polymerization was suppressed at the stage of oligomerization with low conversion. This tendency was enhanced above the crystal transition point, giving mainly dimer in low yield. Above the melting point, only radical polymerization occurred with the aid of oxygen. The steric configuration of the products in the crystalline state was 1,3-trans with respect to the cyclobutane ring. Peaks in NMR spectra of all products were assigned to the protons involved in four compounds up to tetramer. Various results obtained have been interpreted in terms of the change, as a function of temperature, from a topochemical polymerization which proceeds under a control of the monomer lattice to a photoinitiated vinyl-type polymerization in the disordered state. It is concluded that a rigid crystal lattice is indispensable for the four-center type photopolymerization to proceed smoothly.  相似文献   

6.
Mechanistic investigations on the polymerization of N-methyl-N-allylmethacrylamide (MAMA) at lower temperature were carried out based upon the ESR studies of MAMA and its monofunctional counterparts irradiated with 60Co γ rays. Cyclopolymerizability of MAMA was also studied in connection with the hindered rotation about its amide C? N bond. The propagating radical observed is only related to the methacryl group but not to the allyl group both in MAMA and its monofunctional counterparts. Polymerization at ?78°C yielded a polymer with a lower degree of cyclization(88.8%) as compared with that of polymers formed at higher temperatures (93.5% above 0°C). A structural study revealed that the increment of the unsaturation in the poly-MAMA obtained at ?78°C is due to the allyl group and the content of pendant methacryl group is almost unchanged over the temperature range from ?78 to 120°C. These results led to the conclusion that the polymerization of MAMA at ?78°C proceeds mainly through the methacryl group, the rate-determining step is the cyclization reaction, and, in addition, cyclization reaction scarcely occurs when it polymerizes through the allyl group. Since MAMA is frozen into a glassy state, the effect of glass transition temperature (Tg) has been studied and it was suggested that the polymerization of MAMA proceeds only above Tg.  相似文献   

7.
p‐Toluenesulfonic acid (TsOH) and several alkyl p‐toluenesulfonates, that is, methyl p‐toluenesulfonate (TsOMe), cyclohexyl p‐toluenesulfonate (TsOCH), and neopentyl p‐toluenesulfonate (TsONP), were evaluated as initiators for the ring‐opening polymerization of benzoxazines. TsOH and TsOMe were highly efficient initiators that induced the polymerization at 60 and 80 °C, respectively. In contrast, TsOCH and TsONP did not initiate the polymerization below 100 °C, while they induced the polymerization at elevated temperatures, 120 and 150 °C, respectively. When TsOCH was used as an initiator, the corresponding polymerization rate was comparable to that observed for the polymerization with using TsOH as an initiator. These results suggested that neutral TsOCH and TsONP can be regarded as “thermally latent initiators,” which underwent the thermal dissociation at the elevated temperatures to generate the corresponding alkyl cations and/or TsOH as the initiators of the polymerization. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
A new chain transfer agent, ethyl 2-[1-(1-n-butoxyethylperoxy) ethyl] propenoate (EBEPEP) was used in the free radical polymerization of methyl methacrylate (MMA), styrene (St), and butyl acrylate (BA) to produce end-functional polymers by a radical addition–substitution–fragmentation mechanism. The chain transfer constants (Ctr) for EBEPEP in the three monomers polymerization at 60°C were determined from measurements of the degrees of polymerization. The Ctr were determined to be 0.086, 0.91, and 0.63 in MMA, St, and BA, respectively. EBEPEP behaves nearly as an “azeotropic” transfer agent for styrene at 60°C. The activation energy, Eatr, for the chain transfer reaction of EBEPEP with PMMA radicals was determined to be 29.5 kJ/mol. Thermal stability of peroxyketal EBEPEP in the polymerization medium was estimated from the DSC measurements of the activation energy, Eath = 133.5 kJ/mol, and the rate constants, kth, of the thermolysis to various temperature. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
With the object to synthesize polyesters by enzymatic catalysis in organic media, two directions have been investigated: (1) the condensation polymerization of linear ω-hydroxyesters and (2) the ring-opening polymerization of lactones. The commercially-available crude porcine pancreatic lipase (PPL), suspended in organic solvents, was the preferred enzyme for the reactions. In order to determine the optimal conditions for the condensation polymerization, the bifunctional methyl 6-hydroxyhexanoate was used as a model compound to study the influence of the following parameters: type of the enzymecatalyst, kind of solvent, concentration, temperature, duration, size of the reaction mixture, and stirring. Film-forming polyesters with a degree of polymerization (DP) up to about 100 were obtained from linear aliphatic hydroxyesters in n-hexane at reflux temperature (69°C). Yet concurrently with the intermolecular condensation polymerization, macrolactones were also formed by intramolecular reaction. Two aromatic hydroxyesters did not react under these conditions. For the ring-opening polymerization of lactones the reaction of ?-caprolactone with methanol as the preferred nucleophile, was studied. Polyesters with a DP of up to 35 were obtained in n-hexane at temperatures between 25 and 40°C. The degrees of polymerization of the polyesters were determined by comparative analyses of the end groups in the 1H-NMR spectra and by determination of molecular weights either by vapor phase osmometry, gel permeation chromatography, or intrinsic viscosity. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The polymerization of isobutyl vinyl ether was studied in a heterogeneous system using iron (II) sulfate calcined in air at various temperatures as a catalyst. The maximum activity was shown by the catalyst calcined at 700°C, which effected the polymerization at room temperature in a few seconds, while the sulfate treated at 750°C was totally inactive. Poly(vinyl ethyl ether) was also obtained by the FeSO4 (700°C) catalyst at room temperature. This catalyst formed the crystalline polymer (melting temperature 135–138°C) when the reaction was performed in toluene as solvent at room temperature. Poisoning experiments with Hammett indicators were carried out with the FeSO4 (700°C) catalyst. The treatment with n-butylamine rendered it inactive in the reaction of isobutyl vinyl ether, while its catalytic activity was little affected by dicinnamalacetone. On the basis of the observed results, the nature of active sites of catalyst is discussed.  相似文献   

11.
It was found that diacyl peroxides can be formed in situ in a polymerization medium by the reaction of an acid anhydride with hydrogen peroxide. For the specific application to aqueous vinyl chloride polymerization, an initiator system based on the base-catalyzed reaction of isobutyric anhydride with hydrogen peroxide to produce diisobutyryl peroxide gave very good results. In contrast, the acid chloride was completely ineffective as a peroxide precursor in this reaction. Studies pointing to diisobutyryl peroxide as the initiating species; investigations of reactant stoichiometry; and comparison of the in situ system with preformed diisobutyryl peroxide were conducted. It was shown that this system makes possible the polymerization of vinyl chloride at 30°C at rates comparable to those obtained with dialkyl peroxydicarbonates at 50°C, thus demonstrating the ability of this system to initiate vinyl chloride polymerization at low temperature. The rates of vinyl chloride polymerization with the use of different concentrations of in situ diisobutyryl peroxide at 30, 40, and 50°C were determined. Similarly, polymerization rates with the use of combinations of in situ diisobutyryl peroxide and n-propyl peroxydicarbonate were determined. The data obtained demonstrate rapid initiation of the polymerization reaction and a reduction in polymerization time made possible by this dual initiator system. These results were verified in pilot-plant and commercial-scale PVC polymerizations.  相似文献   

12.
Electron spin resonance (ESR) observations of the solid-state thermal polymerization of bis(p-toluene sulphonate) of 2,4-hexadiyne-1, 6-diol at 60°C, 70°C, and 80°C are reported. The weak paramagnetism observed in polycrystalline samples is interpreted in terms of departures of the polymer chain from an equilibrium conformation. Decomposition occurs at 70°C and 80°C during the final phase of polymerization producing additional paramagnetic centers. Lineshape parameters measured during polymerization show changes which we attribute to changes in the delocalization and mobility of the paramagnetic center. We conclude that the nature of paramagnetism in crystalline conjugated diacetylene polymers is a chain defect property characteristic of interband electronic states close to the valence band.  相似文献   

13.
The polymerization of vinyl monomer initiated by an aqueous solution of poly(vinylbenzyltrimethyl)ammonium chloride (Q-PVBACI) was carried out at 85°C. Styrene, p-chlorostyrene, methyl methacrylate, and i-butyl methacrylate were polymerized, whereas acrylonitrile and vinyl acetate were not. The effects of the amounts of vinyl monomer, Q-PVBACI, and water on the conversion of vinyl monomer were studied. The overall activation energy in the polymerization of styrene was estimated as 79.1 kJ mol?1. The polymerization proceeded through a radical mechanism. The selectivity of vinyl monomer was discussed by “a concept of hard and soft hydrophobic areas and monomers.”  相似文献   

14.
The polymerization of p-xylylene was followed with a newly designed differential thermal analysis system at temperatures between ?196°C and ?20°C. It was found that at the lower temperatures the monomer condenses first to the crystalline monomer before simultaneous polymerization and crystallization. At the higher temperatures, polymerization and crystallization are successive. The data are in agreement with the morphology and crystal structure data derived in Part I of this series of papers on crystallization during polymerization of poly-p-xylylene.  相似文献   

15.
Sodium thiophenoxide initiated the polymerization of methyl methacrylate in polar aprotic solvents (DMF, DMSO, HMPA). The active species that initiated the polymerization of the monomer was found by spectrophotometric measurements and by the sodium fusion method to be sodium thiophenoxide itself. The activation energy for the polymerization of the monomer in DMF solvent obtained was E = 3.4 kcal/mole below 30°C, and E = ?3.3 kcal/mole above the temperature. The phenomena were reasoned as the result of the formation of two active species: a solvent-separated ion pair and a contact ion pair. The effects of counterions on the reactivity of thiophenoxide increased with increasing electropositivity of the metals: Li < Na < K. Sodium phenoxide, the oxygen analog of thiophenoxide, was also found to initiate the polymerization of the monomer in the solvents. The relative reactivity of thiophenoxide to phenoxide for the monomer in HMPA at 30°C was thus determined: phenyl-SNa > phenyl-ONa. The relative effect of the polar aprotic solvents on the reactivity of thiophenoxide was also as follows: HMPA > DMF > DMSO. The kinetic studies were made by the graphical evaluation of rate constants. The following results were obtained for the monomer at 20°C in DMF solvent: Kp = 3.5 × 102 1./mole-hr and Kt = 9.8 × 10?2/hr.  相似文献   

16.
The initial stages of the free radical polymerization of diethylene glycol bis(allyl carbonate) at temperatures of 35–65°C have been studied. The polymer is unsaturated and cyclization to give a 16-membered ring occurs only to a small extent. The kinetic order with respect to the initiator, di-sec-butyl peroxydicarbonate, has an average value of 0.79; the order increases slightly with peroxydicarbonate concentration over the range 0.018–0.22M. The molecular weight of the polymer isolated after 3% polymerization is close to 19,000. It shows no significant dependence on initiator concentration or on temperature. The dominant feature of the bulk polymerization, as in free radical polymerization of the other allyl and diallyl monomers, is degradative chain transfer in which the growing polymer radical abstracts a hydrogen atom from a monomer unit to give a relatively unreactive allylic radical. The dependence of rate on initiator concentration is rationalized if some of these allylic radicals are able to reinitiate polymerization. The transfer constant to monomer is 0.014 at 50°C, assuming that the main termination step involves mutual termination of allylic radicals. Carbon tetrachloride is an active transfer agent with a transfer constant of 0.20 ± 0.04 at 50°C. Toluene, which is less active, has a transfer constant of 0.0064 at 50°C and also retards the polymerization. Some kinetic studies have been made with other initiators, including di-2-methyl-pentanoyl peroxide which initiates polymerization at temperatures as low as 13°C.  相似文献   

17.
Free radical polymerization of n-dodecyl methacrylate (DDMA) in bulk has been investigated by differential scanning calorimetry (DSC). Autoacceleration of reaction was observed at the temperatures 70, 80, and 90 °C, with 0.25, 0.5, and 1 wt% of initiator, and was absent at 100 °C. DSC curves obtained at the temperatures below 100 °C were characterized by two maxima. Two-peak deconvolution was used to separate DSC curve into two constitutive unimodal curves, i.e., to calculate the contribution of polydodecyl methacrylate formed before (first maximum) and after (second maximum) the onset of autoacceleration. The share of second maximum decreases as the polymerization temperature and initiator concentration are increased. As the organization of monomer is known to decrease with increasing temperature, it can be expected that the fraction of polymerized disordered phase of monomer (first maximum in DSC curve) is the highest at 90 °C. Our results confirm this prediction and are in good agreement with those observed from conversion versus time curves of DDMA polymerization.  相似文献   

18.
The controlled polymerization of methyl methacrylate (MMA) in bulk was initiated with p‐chlorobenzenediazonium tetrafluoroborate ( 1 ) and Cu(II) or Cu(I)/Cu(II)/N,N,N′,N″,N″‐pentamethyldietylene triamine (PMDETA) complex system at various temperatures (20, 60, and 90 °C). The proposed polymerization mechanism is based on the Meerwein‐type arylation reaction followed by a reverse atom transfer radical polymerization. In this mechanism, aryl radicals formed by the reaction with 1 and Cu(I) and/or PMDETA initiated the polymerization of MMA. The polymerization is controlled up to a molecular weight of 46,000 at 90 °C. Chain extension was carried out to confirm the controlled manner of the polymerization system. In all polymerization systems, the polydispersity index and initiator efficiency ranged from 1.10–1.57 to 0.10–0.21, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2019–2025, 2003  相似文献   

19.
Kinetics of the free radical polymerization of styrene at 110 °C has been investigated in the presence of C‐phenyl‐Ntert‐butylnitrone (PBN) and 2,2′‐azobis(isobutyronitrile) (AIBN) after prereaction in toluene at 85 °C. The effect of the prereaction time and the PBN/AIBN molar ratio on the in situ formation of nitroxides and alkoxyamines (at 85 °C), and ultimately on the control of the styrene polymerization at 110 °C, has been investigated. As a rule, the styrene radical polymerization is controlled, and the mechanism is one of the classical nitroxide‐mediated polymerization. Only one type of nitroxide (low‐molecular‐mass nitroxide) is formed whatever the prereaction conditions at 85 °C, and the equilibrium constant (K) between active and dormant species is 8.7 × 10?10 mol L?1 at 110 °C. At this temperature, the dissociation rate constant (kd) is 3.7 × 10?3 s?1, the recombination rate constant (kc) is 4.3 × 106 L mol?1 s?1, whereas the activation energy (Ea,diss.), for the dissociation of the alkoxyamine at the chain‐end is ~125 kJ mol?1. Importantly, the propagation rate at 110 °C, which does not change significantly with the prereaction time and the PBN/AIBN molar ratio at 85 °C, is higher than that for the thermal polymerization at 110 °C. This propagation rate directly depends on the equilibrium constant K and on the alkoxyamine and nitroxide concentrations, as well. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1219–1235, 2007  相似文献   

20.
SG1-based amphiphilic macroinitiators were synthesized from oligoethylene glycol methyl ether methacrylate and 10 mol% acrylonitrile or styrene (as the controlling comonomer) to conduct the nitroxide mediated polymerization of bio-based methacrylic monomers (isobornyl methacrylate (IBOMA) and C13 alkyl methacrylate (C13MA)) in miniemulsion. The effect of the addition of surfactant (DOWFAX 8390), co-stabilizer (n-hexadecane) and different reaction temperatures (80, 90 and 100°C) on polymerization kinetics was studied. We found that the NMP of IBOMA/C13MA using amphiphilic macroalkoxyamines were most effective during miniemulsion polymerization (linear trend of Mn versus conversion and high latex stability) in presence of 2 wt% surfactant and 0.8 wt% co-stabilizer (relative to monomer) at 90°C. The effect of surfactant, co-stabilizer and temperature on particle size during the polymerization was studied and suggested a decrease in initial particle size with the addition of surfactant and co-stabilizer. Finally, the thermal properties of IBOMA/C13MA polymers, prepared by amphiphilic macroinitiators, were examined thoroughly, indicating a Tg in the range of −44°C < Tg < 109°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号