首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
The synthesis of two previously unknown polycyclic heterocyclic ring systems via photocyclization is described. The unequivocal assignment of their proton and carbon spectra was achieved by utilizing two-dimensional nmr techniques.  相似文献   

3.
The reaction of the isothiourea derivative 2 with methylaminc or pyrrolidine resulted in guanidines 3a-3b . Using hydrazine under the same conditions the tetrazole derivative 4 was obtained. On reacting 2 with piperidine, morpholine, methylhydrazine, phenylhydrazine, hydroxylamine or sodium hydroxide, cycliza-tion took place leading to the novel 4-cyanimino-1,2,3,4,6,7,12,12b-octahydro-3,12b-ethanopyrim-ido[1′,6′:1,2]pyrido[3,4-b]indole ( 5 ). Some structural aspects of 5 and other model compounds were analysed mainly by 13C nmr spectroscopy.  相似文献   

4.
Photocyclization of 3-chloro-N-(3-phenanthryl)thieno[2,3-b]thiophene-2-carboxamide ( 5 ) yielded only one of the two possible structural isomers, thieno[3′,2′:4,5]thieno[2,3-c]naphtho[1,2-f]quinolin-6(5H)-one ( 6 ), which was further elaborated to afford the unsubstituted ring system 10 , its triazole 11 and tetrazole 12 . The structural confirmation of 10 was achieved by the total assignment of its 1H and 13C nmr spectra by the concerted utilization of two-dimensional nmr spectroscopic methods.  相似文献   

5.
Reduction of N-thienybnethylphthalimides 5a-e followed by the Wittig reaction gave the substituted acetic acids 8a-e . Their corresponding acyl chlorides where cyclized in the presence of aluminium trichloride to furnish the cyclic ketones 9a-e . Treatment of these ketones with bromine followed by triethylamine, or with selenium dioxide led to the thienoazepinoisoindolediones 1a-e .  相似文献   

6.
7.
A synthesis of the thieno[2′,3′(3′,2′ or 3′,4′):5,6]azocino[2,1-a]isoindole-7,13-diones 6a-c was developed from N-thienylethylphthalimides 3a-c using a Wittig reaction followed by a Friedel-Crafts cyclization of acetic acid derivatives 5a-c . Reduction of ketones 6a-c into alcohols 7a-c was stereo specific.  相似文献   

8.
The synthesis of two previously unknown novel polycyclic heterocyclic ring systems via photocyclization is described. The structural assignment of the isomeric ring systems, 4 and 5 , was achieved by the total assignment of their 1H and 13C nmr spectra by the concerted usage of two-dimensional nmr methods.  相似文献   

9.
The polycyclic heterocyclic compound with a novel ring system, 15-chloro[1]benzothieno[2″,3″:3′,4′]-naphtho[1′,2′:4,5]thieno[2,3-c]quinoline was synthesized via photocyclization of 3-chloro-N-phenyl[1]-benzothieno[2′,3′:3,4]naphtho[2,1-b]fhiophene-2-carboxamide followed by chlorination with phosphorus oxychloride. The assignment of its 1H and 13C nmr spectra was accomplished by utilizing two-dimensional nmr methods.  相似文献   

10.
The synthesis of two previously unknown heterocyclic ring systems, namely, thieno[3′,2′:4,5]thieno[2,3-c]-quinoline and thieno[2′,3′:4,5]thieno[2,3-c]quinoline is reported. These two novel ring systems were assembled by photocyclization of the appropriate anilides.  相似文献   

11.
The nitration of dithieno[3,4-b:3′,2′-d]pyridine ( 2 ) and dithieno[2,3-b:3′,2′-d]pyridine ( 3 ) has been studied. Nitration of 2 occurred in both positions of the c-fused thiophene ring, while 3 was predominantly substituted in the 2-position. The structures of the nitro derivatives were proven by extensive use of 1H and 13C nmr spectroscopy.  相似文献   

12.
Nitration of dithieno[3,2-b:3′,2′-d]pyridine ( 4 ) and dithieno[3,2-b:3′,4′-d]pyridine ( 5 ) has been studied. Nitration of 4 occurred in both positions of the C ring, while 5 was predominantly substituted on the 3,4-fused ring. The structures of the nitro derivatives were proven by extensive use of 1H and 13C nmr spectroscopy.  相似文献   

13.
By reacting 2-chloronicotinoyl chloride with acetyl or benzoyl acetate, ethyl 2-methyl- or 2-phenyl-4-oxopyrano[2,3-b]pyridine-3-carboxylates were prepared. The nucleophilic rearrangement of the latter with hydrazines gave rise to the title compounds.  相似文献   

14.
The 1,2′,3,3′,5′,6′-hexahydro-3-phenylspiro[isobenzofuran-1,4′-thiopyran] ring system ( 2a ) has been prepared from o-bromobenzoic acid. The 1,2′,3,3′,5′,6′-hexahydro-3-phenylspiro[isobenzofuran-1,4′-pyran] ring system ( 3a ) has been prepared from 2-bromobenzhydrol methyl ether. Several 3-(dimethylaminoalkyl) derivatives of both 2a and 3a were prepared by lithiation followed by alkylation.  相似文献   

15.
3‐Amino‐4‐aryl‐5‐ethoxycarbonyl‐6‐methylthieno[2,3‐b]pyridine‐2‐carboxamides 3a‐c were prepared from ethyl 4‐aryl‐3‐cyano‐6‐methyl‐2‐thioxo‐1,2‐dihydropyridine‐5‐carbonylates 1a‐c and reacted with some carbonyl compounds to give tetrahydropyridothienopyrimidine derivatives 6a‐c, 7a‐c and 8a‐c , respectively. Treatment of compound 3c with chloroacetyl chloride led to the formation of a next key compound, ethyl 2‐chloromethyl‐4‐oxo‐3,4‐dihydropyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine‐8‐carboxylate 9 . Also, 3‐amino‐2‐benzimidazolylthieno[2,3‐b]pyridine‐5‐carboxylate 5 and 2‐(3′‐aminothieno [2,3‐b]pyridin‐2′‐yl)‐4‐oxo‐3,4‐dihydropyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine‐8‐carboxylate 17 were prepared from 1c. The compounds 5, 9 and 17 were used as good synthons for other pyridothienopyrimidines and pyridothienopyrimidobenzimidazoles as well as for related fused polyheterocyclic systems.  相似文献   

16.
Pyrido [3′,2′:4,5]thieno[3,2-d] pyrimidine and several of its derivatives have been synthesized.  相似文献   

17.
A series of structurally novel 7,8,9,10-tetrahydropyrido[3′,4′:4,5]pyrrolo[2,3-c,]quinolines, 4a-c , were synthesized via a facile Fischer indole cyclization from the appropriately substituted hydrazinoquinolines 2a-c . Acetamides 4a,c were hydrolyzed to 5a,b and further converted to tertiary amines 6a-c . Potent antihypertensive activity has been observed with a number of the title compounds as well as the intermediate 3a .  相似文献   

18.
From an analysis of nmr spectral data, 1,6,7,12b-tetrahydro-2H,4H-[1,3 ]oxazino[3′, 4′ :1,2]-pyrido[ 3,4-b ]indole is shown to exist in solution at room temperature almost entirely in the cis-fused ring conformation with the nitrogen lone pair bisecting the C4 methylene group whereas under the same conditions 1,2,3,6,7,12b-hexahydro-3-methyl-4H-pyrimido[3′,4′:1,2] pyrido-[3,4-b ]indole exists as an approximately 50:50 equilibrium mixture of the cis and trans-fused ring conformations.  相似文献   

19.
Diaminomethylene- and aminomethylthiomethylenehydrazones [2] of cyclic ketones 1–8 readily reacted with ethoxymethylenemalononitrile to give spiro[cycloalkane-1,2′-[1,2′,4′]triazolo[1,5′-c]pyrimidine-8′-carbonitrile] derivatives 12–19 through the electrocyclic reaction of the initially formed condensation products 26 in moderate to high yields. The spiro[cyclopentanetriazolopyrimidine] derivatives underwent ring-opening at the cycloalkane moiety upon heating in solution to give 2-alkyl-5-substituted-[1,2,4]triazolo[1,5-c]pyrimidine-8′-carbonitriles 20–23 . When an alkyl substituent was introduced into the cyclopentane ring, cleavage of the spiro compounds occurred preferentially at the cyclopentane moiety between the spiro carbon and the more branched one. In contrast, the cyclohexane ring, especially of spiro-5-amino-triazolopyrimidines 17 and 18 strongly resisted to ring-opening under similar conditions, but those of 5-methylthiotriazolopyrimidines 14 gave up to 17 percent of cleavage after prolonged heating in hot ethanol. 2-t-Butyl-5-methylthio-2,3-dihydro[1,2,4]triazolo[1,5-c]pyrimidine-8-carbonitrile 25 [R3 = C(CH3)3] was highly susceptible to the cleavage even at room temperature and produced the corresponding 2-unsubstituted triazolopyrimidine 24 with loss of the t-butyl group.  相似文献   

20.
Bromination of dithieno[3,4-b:3′,4′-d]pyridine ( 1 ) and dithieno[2,3-b:3′,2′-d]pyridine ( 2 ) has been studied. Disubstitution occurred at both positions of the C ring. The substitution pattern is found to be similar to that of the nitration reaction. The structures of bromo derivatives were established by 1H and 13C nmr spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号