首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Solvothermal reaction of [MnCl2(amine)] (amine = terpy and tren) with elemental As and Se at a 1:1:2 molar ratio in H2O/tren (10:1) affords the dimanganese(II) complexes [{Mn(terpy)}2(μ‐As2Se4)] ( 1 ) and [{Mn(tren)}2(μ‐As2Se5)] ( 2 ) respectively. The tetradentate [As2Se4]4? bridging ligands in 1 contain a central As–As bond and exhibit approximately C2h symmetry. Pairs of gauche sited Se atoms participate in five‐membered As2Se2Mn chelate rings. In contrast, two AsSe3 pyramids share a common corner in the [As2Se5]4? ligands of 2 and each coordinates an [Mn(tren)]2+ fragment through a single terminal Se atom. Such dinuclear complexes are linked into tetranuclear moieties through weak Se···Mn interactions of length 3.026(3) Å involving one of these terminal Se atoms. At a 1:3:6 molar ratio, solvothermal reaction of [MnCl2(tren)] with As and Se leads to formation of a second dinuclear complex [{Mn(tren)}2(μ‐As2Se6)2] ( 3 ), which contains two bridging bidentate [As2Se6]2? ligands. These are cyclic with an As2Se4 ring and can be regarded as being derived from [As2Se5]4? anions by formation of two Se‐Se bonds to an additional Se atom.  相似文献   

3.
A series of novel molybdenum(V) and tungsten(VI) oxoazides was prepared starting from [MOF4] (M=Mo, W) and Me3SiN3. While [WO(N3)4] was formed through fluoride–azide exchange in the reaction of Me3SiN3 with WOF4 in SO2 solution, the reaction with MoOF4 resulted in a reduction of MoVI to MoV and formation of [MoO(N3)3]. Carried out in acetonitrile solution, these reactions resulted in the isolation of the corresponding adducts [MoO(N3)3?2 CH3CN] and [WO(N3)4?CH3CN]. Subsequent reactions of [MoO(N3)3] with 2,2′‐bipyridine and [PPh4][N3] resulted in the formation and isolation of [(bipy)MoO(N3)3] and [PPh4]2[MoO(N3)5], respectively. Most molybdenum(V) and tungsten(VI) oxoazides were fully characterized by their vibrational spectra, impact, friction and thermal sensitivity data and, in the case of [WO(N3)4?CH3CN], [(bipy)MoO(N3)3], and [PPh4]2[MoO(N3)5], by their X‐ray crystal structures.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Thiohalo Compounds of Niobium and Tantalum: NbSCl3, TaSCl3, [NbSCl5]2?, [TaSCl5]2?, [NbSBr4]?. Crystal Structures of (PPh4)2[NbSCl5] · 2 CH2Cl2 and NEt4[NbCl6] NbSCl3 can be obtained from NbCl5 by reaction with H2S or bistrimethylsilyl sulfide in a suspension of CCl4 or CH2Cl2, respectively; in the latter case the product contains a rest of trimethylsilyl groups. This also applies for TaSCl3, NbSBr3 and TaSBr3, which are formed from the metal pentahalides and S(SiMe3)2. NEt4[NbSCl4] is formed together with NEt4[NbCl6] in the reaction of NbCl5 with NEt4SH in CH2Cl2. PPh4[NbCl6] reacts with S(SiMe3)2 in dichloromethane yielding (PPh4)2[NbSCl5] · 2 CH2Cl2, whereas PPh4[NbSBr4] is obtained from PPh4[NbBr6] and S(SiMe3) under the same conditions. (PPh4)2[TaSCl5] · 2 CH2Cl2 was obtained from TaSCl3 and PPh4Cl in CH2Cl2. According to an X-ray crystal structure determination (PPh4)2[NbSCl5] · 2 CH2Cl2 crystallizes in the β-(AsPh4)2[UCl6] · 2 CH2Cl2 type with positionally disordered, octahedral anions. Crystal data: a = 1 021.7, b = 1120.4, c = 1 243.3 pm, α = 70.77, β = 80.24, γ = 80.54°, space group P1 , Z = 2; 2462 unique observed reflexions, R = 0.036. NEt4[NbCl6] crystallizes isotypic to NEt4[WCl6], a = 723.5, b = 1 018.0, c = 1 174.6 pm, β = 100.07°, space group P21/n, Z = 2; 1 875 reflexions, R = 0.075.  相似文献   

11.
Whereas reaction of [PhCH2NMe3]2|Te6Fe8(CO)24] (1) in refluxing CH2CI2 forms Fe2(CO)6(μ0-) TeCH2Te), treatment of 1 with Ph2SnCl 2 or Mel gave the oxidation product Te2Fe3(CO)9. Oxidation of 1 with [Cu(CH3CN)4]BF4 afforded Te2Fe3(CO)9 in good yield. Cluster 1 was converted to [PhCH2NMe3][Te4Fe5(CO)14] (2) in MeOH/CH2Cl2 solution. Cluster 2 was structurally characterized by single-crystal X-ray diffraction and spectral methods. Complex 2 is composed of two Te2Fe2(CO)6 fragments linked by one Fe(CO)2 group. 2 crystallizes in the orthorhombic space group Pbcn with a = 13.351 (4) Å, b = 13.417 (4) Å, c = 26.077 (3) Å, V = 4671 (2) Å 3, Z = 4.  相似文献   

12.
13.
The complexes [Cu2Br4]2?, [Cu2I4]2?, [Cu2I2Br2]2?, [Cu2I3Cl]2?, [Ag2Cl4]2? have been characterized as their isomorphous bis(triphenylphosphoranylidene)ammonium ([Ph3PNPPh3]+ = PNP+) salts by single crystal structural determinations. All anions show the centrosymmetric doubly halogen‐bridged forms [XM(μ‐X)2MX]2? with three‐coordinate metal atoms that have been observed in [M2X4]2? complexes with other large organic cations. In [Cu2I2Br2]2? the iodide ligands occupy the bridging positions and the bromide the terminal positions, while in [Cu2I3Cl]2?, obtained in an attempt to prepare [Cu2I2Cl2]2?, two of the iodide ligands occupy the bridging positions with the third iodide and the chloride ligand occupying two statistically disordered terminal positions. In [Ag2Cl4]2? the distortion from ideal trigonal coordination of the metal atom is greater than in the copper complexes, but less than in other previously reported [Ag2Cl4]2? complexes with organic cations. The ν(MX) bands have been assigned in the far‐IR spectra, and confirm previous observations regarding the unexpectedly simple IR spectra of [Cu2X4]2? complexes.  相似文献   

14.
15.
[PPh4][EI4] (E=As, Sb, Bi) salts were reacted with four and five equivalents of AgN3 to form tetraazidopnictates and pentaazidopnictates of the type [PPh4][E(N3)4] and [PPh4]2[E(N3)5], respectively. The synthesis of [PPh4][P(N3)4] was also attempted from the reaction of P(N3)3 with [PPh4]N3, but it yielded only the starting materials. Herein, we report the synthesis and structure elucidation of [PPh4][E(N3)]4 (E=As, Sb) and pentaazidobismuthate, stabilized as the dimethyl sulfoxide (DMSO) anion adduct, [PPh4]2[Bi(N3)5(dmso)]. Successive anion formation along the series E(N3)3+nN3? (n=1–3) and E(N3)5+N3? was studied by density functional theory.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号