首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Condensation of 3,4-dichloro-6-[(trimethylsilyl)oxy] pyridazine ( 3 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-β- D -ribofuranose ( 4 ), by the stannic chloride catalyzed procedure, has furnished 3,4-dichloro-1-(2,3,5-tri-O-benzoyl-β- D -ribofuranosyl) pyridazin-6-one ( 5 ). Nucleophilic displacement of the chloro groups and removal of the benzoyl blocking groups from 5 has furnished 3-chloro-4-methoxy-, 3,4-dimethoxy-, 4-amino-3-chloro-, 3-chloro-4-methylamino-, 3-chloro-4-hydroxy-, and 4-hydroxy-3-methoxy-1-β- D -ribofuranosylpyridazin-6-one. An unusual reaction of 5 with dimethylamine is reported. Condensation of 4,5-dichloro-3-nitro-6-[(trimethylsilyl)oxy]pyridazine with 4 yielded 4,5-dichloro-3-nitro-1-(2,3,5-tri-O-benzoyl-β- D -ribofuranosyl)pyridazin-6-one ( 24 ). Nucleophilic displacement of the aromatic nitro groups from 24 is discussed. Condensation of 3 with 3,5-di-O-p-toluoyl 2-deoxy- D -erythro-pentofuranosyl chloride ( 28 ) afforded an α, β mixture of 2-deoxy nucleosides. The synthesis of certain 3-substituted pyridazine 2′-deoxy necleosides are reported.  相似文献   

2.
The reaction of the trimethylsilyl derivative of 4,6-dichloroimidazo[4,5-c]pyridine with 2,3,5-tri-O-benzoyl- D -ribofuranosyl bromide gave four nucleosides-the α- and β-anomers of the 1-isomer and the α- and β-anomers of the 3-isomer (3.9:2.7:1.5:1). In contrast, the fusion reaction of 4,6-dichloroimidazo[4,5-c ]pyridine with 1,2,3,5-tetra-O-acetyl-β- D -ribofuranose gave a high yield of the 1-β-isomer, which was converted to the known 3-deazaadenosine (4-amino-l-β- D -ribofuranosylimidazo[4,5-c]pyridine).  相似文献   

3.
Several imidazo[4,5-d]pyridazine nucleosides which are structurally similar to inosine were synthesized. Anhydrous stannic chloride-catalyzed condensation of persilylated imidazo[4,5-d]-pyridazin-4(5H)one (1) and imidazo[4,5-d]pyridazine-4,7(5H,6H)dione ( 16 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose ( 3 ) provided (after sodium methoxide deblocking) 6-β-D-ribo furanosylimidazo[4,5-d]pyridazin-4(5H)one (5) and 3,6-di-(β-D-ribofuranosyI)imidazo[4,5-d]pyridazin-4-one ( 7 ); and 1-(β-D-ribofuranosyl)imidazo[4,5-d]pyridazine-4,7(5H,6H)dione ( 19 ) and 1,5 or 6-di-(β-D-ribofuranosyl)imidazo[4,5-d ]pyridazine-4,7(5H or 6H)dione ( 21 ), respeeitvely. 4,7-Diehloro-1-β-D-ribofuranosylimidazo[4,5-d]pyridazine ( 12 ) and dimethyl 1-β-D-ribofuranosylimidazole-4,5-dicarboxylate ( 26 ), both prepared from stannic chloride-catalyzed ribosylations of the corresponding heterocycles, were converted in several steps to 3-β-D-ribo-furanosy limidazo[4,5-d]pyridazin-4(5H)one ( 14 ) and nucleosidc 19 , respectively. Acid-catalyzed isopropylidenation of mesomeric betaine 7 or nuclcoside 14 provided 3-(2,3-isopropylidene-β-D-ribofuranosyl)imidazo[4,5-d]pyrizin-4(5H)one ( 31 ). 1-β-D-Ribofuranosylimidazo[4,5-d]-pyridazine ( 29 ) was obtained in several steps from nueleoside 12 . The structure of the nucleosides was established by the use of carbon-13 and proton nmr.  相似文献   

4.
Ribosylation of 3-amino-5H-[1,2,4]triazolo[4,3-b][1,2,4]triazole ( 1 ) with l-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose and stannic chloride resulted in the following protected nucleoside analogs: 3-amino-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)[1,2,4]triazolo[4,3-β][1,2,4]triazole ( 4 ), 3-amino-1-(2,3,5-tri-O-benzoyl-α-D-ribofuranosyl)[1,2,4]triazolo[4,3-β][1,2,4]triazole ( 5 ), 3-amino-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)[1,2,4]triazolo[4,3-β][1,2,4]triazole ( 5 ), and 3-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl) amino-5H-[1,2,4]triazolo[4,3-b]-[1,2,4]triazole ( 7 ). Compounds 4–6 were deprotected to 3-amino-1-β-D-ribofuranosyl[1,2,4]triazolo[4,3-b][1,2,4]-triazole ( 3 ), 3-amino-1-α-D-ribofuranosyl[1,2,4]triazolo[4,5-b][1,2,4]triazole ( 8 ), and 3-imino-2H-2-β-D-ribo-furanosyl[1,2,4]triazolo[4,3-b][1,2,4]triazole ( 9 ), while 7 could not be deprotected without decomposition. Compounds 1, 4, 6, 7 , and 9 were screened and found to have no antiviral activity.  相似文献   

5.
The parent imidazo[4,5-c]pyridazine (IV) has been prepared for the first time by three different routes. 1-Methylimidazo[4,5-c]pyridazine (XX) and 3-methylimidazo[4,5-c]pyridazine (XXVII) have been prepared by unequivocal syntheses. The constitution of the methylation product of imidazo[4,5-c]pyridazine-2-thiol (VIII) has been shown to be 2-methylthioimidazo[4,5-c]-pyridazine (IX) by the unequivocal syntheses of 1-methylimidazo[4,5-c]pyridazine-2-thiol (XXIII) and 3-methylimidazo[4,5-c]pyridazine-2-thiol (XXXIII). Likewise, the structure of the methylation product (XIII) was shown to be S-methylation by the unequivocal syntheses of 1-methyl-2-methylthio-6-chloroimidazo[4,5-c]pyridazine (XXIV) and 3-methyl-2-methylthio-6-chloroimidazo[4,5-c]pyridazine (XXXI), respectively. Several 7-substituted amino-v-triazolo-[4,5-c]pyridazines (XXXVIII) have been prepared from 7-chloro-v-triazolo[4,5-c]pyridazine (XXXVII).  相似文献   

6.
The condensation of 4-acetamido-3-cyanopyrazolo[3,4-d]pyrimidine ( 5 ) with crystalline 2,3,5-tri-O-acetyl-β- D -ribofuranosyl chloride ( 6 ) has furnished a good yield of nucleoside material ( 7 ) which on treatment with sodium methoxide in methanol provided a high yield of nucleoside which was subsequently established as methyl 4-amino-1-(β- D -ribofuranosyl)pyrazolo[3,4-d]-pyrimidine-3-formimidate monohydrate ( 11 ). The formimidate function of 11 was found to be highly reactive and 11 was readily converted into the corresponding carhoxamidine ( 8 ), carboxamidoxime ( 14 ) and carboxamidrazone ( 15 ) when treated with the appropriate nucleophiles. Treatment of the imidate ( 11 ) with sodium hydrogen sulfide gave a high yield of the thiocarboxamide ( 12 ) which was then readily converted into 4-amino-3-cyano-1-(β- D -ribofuranosyl)pyrazolo[3,4-d]pyrimidine ( 16 ). Aqueous base transformed 11 into 4-amino-1-(β- D -ribofuranosyl)-pyrazolo[3,4-d]pyrimidine-3-carboxamide ( 10 ) while more vigorous basic hydrolysis provided the corresponding carboxylic acid ( 9 ) in nearly quantitative yield. Decarboxylation of 9 proceeded smoothly in hot sulfolane to provide the known 4-amino-1-(β- D -ribofuranosyl)pyrazolo[3,4-d]pyrimidine ( 13 ) in 68% yield which unequivocally established the site of ribosylation and anomeric configuration for all nucleosides reported in this investigation.  相似文献   

7.
Nucleosides of pyrrolo[2,3-d]pyridazin-4(5H)-ones were prepared by the single-phase sodium salt glycosylation of appropriately functionalized pyrrole precursors. The glycosylation of the sodium salt of ethyl 4,5-dichloro-2-formyl-1H-pyrrole-3-carboxylate ( 4 ), or its azomethino derivative 7 , with 1-bromo-2,3,5-tri-O-benzoyl-D-ribofuranose in acetonitrile afforded the corresponding substituted pyrrole nucleosides ethyl 4,5-dichloro-2-formyl-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-1H-pyrrole-3-carboxylate ( 5 ) and ethyl 4,5-dichloro-2-phenylazomethino-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-1H-pyrrole-3-carboxylate ( 8 ), respectively. The latter, upon treatment with hydrazine, afforded the annulated product 2,3-dichloro-1-β-D-ribofuranosyl-1H-pyrrolo[2,3-d]pyridazin-4(5H)-one ( 6 ), in good yield. The unsubstituted analog 1-β-D-ribofuranosyl-1H-pyrrolo[2,3-d]pyridazin-4(5H)-one ( 9 ), was obtained upon catalytic dehalogenation of 6 . This report represents the first example of the synthesis of nucleosides of pyrrolopyridazines.  相似文献   

8.
A model iodophenyl imidazole ribonucleoside has been synthesized to study biodistribution properties in laboratory animals. The key intermediate 5-amino-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)imidazole-4-[N-(p-iodophenyl)carboxamide] ( 5 ) was synthesized by coupling N-succinimidyl-5-amino-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)imidazole-4-carboxylate ( 4 ) and p-iodoaniline. Deacetylation of the intermediate compound gave 5-amino-1-β-D-ribofuranosylimidazole-4-[N-(p-iodophenyl)]carboxamide ( 6 ). Ring annulation via diazotization of 5 gave 7-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)imidazo[4,5-d]-v-triazin-[3-N-(p-iodophenyl)]-4-one ( 7 ). Subsequent deacetylation of 7 afforded 7-β-D-ribofuranosylimidazo[4,5-d]-v-triazin-[3-N-(p-iodophenyl)]-4-one ( 8 ). The radiolabeled compounds, [125I] 5 and [125I] 6 were prepared in a manner similar to the corresponding unlabeled compounds except that p-[125I]iodoaniline was used for coupling with 4 . Biodistribution studies of iodine-125-labeled 5 and 6 were performed in female Fischer rats and tumor bearing nude mice. Compound 6 showed uptake in the brain and proliferating tissues such as tumor and bone-marrow.  相似文献   

9.
Several disubstituted pyrazolo[3,4-d]pyrimidine, pyrazolo[1,5-a]pyrimidine and thiazolo[4,5-d]pyrimidine ribonucleosides have been prepared as congeners of uridine and cytidine. Glycosylation of the trimethylsilyl (TMS) derivative of pyrazolo[3,4-d]pyrimidine-4,6(1H,5H,7H)-dione ( 4 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose ( 5 ) in the presence of TMS triflate afforded 7-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)pyrazolo-[3,4-d]pyrimidine-4,6(1H,5H)-dione ( 6 ). Debenzoylation of 6 gave the uridine analog 7-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine-4,6(1H,5H)-dione ( 3 ), identical with 7-ribofuranosyloxoallopurinol reported earlier. Thiation of 6 gave 7 , which on debenzoylation afforded 7-β-D-ribofuranosyl-6-oxopyrazolo[3,4-d]pyrimidine-4(1H,5H)-thione ( 8 ). Ammonolysis of 7 at elevated temperature gave a low yield of the cytidine analog 4-amino-7-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-6(1H)-one ( 11 ). Chlorination of 6 , followed by ammonolysis, furnished an alternate route to 11 . A similar glycosylation of TMS-4 with 2,3,5-tri-O-benzyl-α-D-arabinofuranosyl chloride ( 12 ) gave mainly the N7-glycosylated product 13 , which on debenzylation provided 7-β-D-arabinofuranosylpyrazolo[3,4-d]pyrimidine-4,6(1H,5H)-dione ( 14 ). 4-Amino-7-β-D-arabinofuranosyl-pyrazolo[3,4-d]pyrimidin-6(1H)-one ( 19 ) was prepared from 13 via the C4-pyridinium chloride intermediate 17 . Condensation of the TMS derivatives of 7-hydroxy- ( 20 ) or 7-aminopyrazolo[1,5-a]pyrimidin-5(4H)-one ( 23 ) with 5 in the presence of TMS triflate gave the corresponding blocked nucleosides 21 and 24 , respectively, which on deprotection afforded 7-hydroxy- 22 and 7-amino-4-β-D-ribofuranosylpyrazolo[1,5-a]pyrimidin-5-one ( 25 ), respectively. Similarly, starting either from 2-chloro ( 26 ) or 2-aminothiazolo[4,5-d]pyrimidine-5,7-(4H,6H)-dione ( 29 ), 2-amino-4-β-D-ribofuranosylthiazolo[4,5-d]pyrimidine-5,7(6H)-dione ( 28 ) has been prepared. The structure of 25 was confirmed by single crystal X-ray diffraction studies.  相似文献   

10.
6-Amino-1-(2-deoxy-β-D-erthro-pentofuranosyl)pyrazolo[4,3-c]pyridin-4(5H)-one ( 5 ), as well as 2-(β-D-ribofuranosyl)- and 2-(2-deoxy-β-D-ribofuranosyl)- derivatives of 6-aminopyrazolo[4,3-c]pyridin-4(5H)-one ( 18 and 22 , respectively) have been synthesized by a base-catalyzed ring closure of pyrazole nucleoside precursors. Glycosylation of the sodium salt of methyl 3(5)-cyanomethylpyrazole-4-carboxylate ( 6 ) with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 8 ) provided the corresponding N-1 and N-2 glycosyl derivatives ( 9 and 10 , respectively). Debenzoylation of 9 and 10 with sodium methoxide gave deprotected nucleosides 14 and 16 , respectively. Further ammonolysis of 14 and 16 afforded 5(or 3)-cyanomethyl-1-(2-deoxy-β-D-erythro-pentofuranosyl)pyrazole-4-carboxamide ( 15 and 17 , respectively). Ring closure of 15 and 17 in the presence of sodium carbonate gave 5 and 22 , respectively. By contrast, glycosylation of the sodium salt of 6 with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide ( 11 ) or the persilylated 6 with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose gave mainly the N-2 glycosylated derivative 13 , which on ammonolysis and ring closure furnished 18 . Phosphorylation of 18 gave 6-amino-2-β-D-ribofuranosylpyrazolo[4,3-c]pyridin-4(5H)-one 5′-phosphate ( 19 ). The site of glycosylation and the anomeric configuration of these nucleosides have been assigned on the basis of 1H nmr and uv spectral characteristics and by single-crystal X-ray analysis of 16 .  相似文献   

11.
The synthesis of 6-methyl-7-(β-D-ribofuranosyl)imidazo[4,5-d]-v-triazin-4-one (8-methyl-2-azainosine ( 2) ) and 6-methyl-7-(β-D-glucopyranosyl)imidazo[4,5-d]-v-triazin-4-one ( 5 ) by diazotization of 5-amino-1-(β-D-ribofuranosyl)-2-methylimidazole-4-carboxamide ( 1 ) and diazotization of 5-amino-1-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-2-methylimidazole-4-carboxamide ( 3 ), followed by deacetylation of the resulting compound 4 , is described. The preparation of 6-methyl-5-(β-D-ribofuranosyl)imidazo[4,5-d]-v-triazin-4-one ( 10 ) and 6-methyl-5-(β-D-glucopyranosyl)imidazo[4,5-d]-v-triazin-4-one ( 11 ) by glycosylation of 6-methylimidazo[4,5-d]-v-triazin-4-one (8-methyl-2-azahypoxanthine, ( 7) ) is also described. Structural assignments were made on basis of analytical and 1H-nmr and uv spectral data.  相似文献   

12.
The synthesis of 5-chloro-8-(ω-dialkylaminoalkylamino)pyrazino[2,3-d]pyridazine (II) proceeded smoothly when 5,8-dichloropyrazino[2,3-d]pyridazine (I) was allowed to react with ω-dialkylaminoalkylamines. Similarly, the reaction of 5,8-dichloropyrido[2,3-d]pyridazine (IV) with ω-dialkylaminoalkylamines gave the two expected products 8-chloro-5-(ω-dialkylaminoalkylamino)pyrido[2,3-d]pyridazine (V) and 5-chloro-8-(ω-dialkylaminoalkylamino)pyrido[2,3-d]pyridazine (VI) in a 2:3 ratio. 4,7-Dichloroimidazo[4,5-d]pyridazine (XII) was found to be much less reactive towards nucleophilic substitutions and more vigorous conditions resulted in disubstituted products (XIII). 7-Chloroimidazo[4,5-c]pyridazine (XVIII) was also found to be much less reactive towards nucleophilic substitution. In both of these cases one of the imidazole nitrogen atoms was blocked by a tetrahydropyranyl group which increased the reactivities and led to the desired monosubstituted products XVII from XII and in the latter case the expected products (XIX).  相似文献   

13.
The synthesis of 2-chloro-1-(β-D -ribofuranosyl)-5,6-dimethylbenzimidazole (3b) has been accomplished by a condensation of 1-trimethylsilyl-2-chloro-5,6-dimethylbenzimidazole (1) with 2,3,5-tri-O-acetyl-D -ribofuranosyl bromide (2) followed by subsequent deacetylation. Nucleophilic displacement of the 2-chloro group from 3b has furnished several interesting 2-substituted-1-(β-D -ribofuranosyl)-5,6-dimethylbenzimidazoles. 1-(β-D -Ribofuranosyl)-5,6-dimethylbenzimidazole (5) and 1-(β-D -ribofuranosyl)-5,6-dimethylbenzimidazole-2-thione (4) were prepared from 3b. Alkylation of 4 furnished certain 2-alkylthio-1-(β-D -ribofuranosyl)-5,6-dirnethylbenzimidazoles and oxidation of 4 with alkaline hydrogen peroxide produced 1-(β-D -ribofuranosyl)-5,6-dimethylbenzimidazole-2-one D The assignment of anomeric configuration for all nucleosides reported is discussed.  相似文献   

14.
We have established that when 5-chloro-6-[cyano(2,3-dihydro-1-R-benzo[d]azol-2-yl)methyl]-2,3-pyrazinedicarbonitriles are reacted with nucleophilic reagents (aliphatic and aromatic amines, hydrogen sulfide), annelation of the five-membered ring occurs on the [b] face of the pyrazine with formation of 6-amino-7-hetaryl-5-R-5H-pyrrolo[2,3-b]pyrazine-2,3-dicarbonitriles and 6-amino-7-(1H-benzo[d]imidazol-2-yl)thieno[2,3-b]pyrazine-2,3-dicarbonitrile respectively. Further heating with excess of acylating reagent leads to formation of a novel heterocyclic system 1H-benzo[4,5]imidazo[1,2-c]pyrazino[2',3':4,5]pyrrolo[3,2-e]pyrimidine. Reaction of vicinal dinitriles with hydrazine hydrate leads to the novel system 1H-pyrrolo[2',3':5,6]pyrazino[2,3-d]pyridazine.  相似文献   

15.
Synthesis of the pyrazolo[3,4-d]pyrimidin-3-one congeners of guanosine, adenosine and inosine is described. Glycosylation of 3-methoxy-6-methylthio-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one ( 13 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose ( 16 ) in the presence of boron trifluoride etherate gave 3-methoxy-6-methylthio-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)pyrazolo[3,4-d]pyrimidin-4(5H)-one ( 17 ) which, after successive treatments with 3-chloroperoxybenzoic acid and methanolic ammonia, afforded 6-amino-3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)one ( 18 ). The guanosine analog, 6-amino-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine-3,4(2H,5H)-dione ( 21 ), was made by sodium iodide-chlorotrimethylsilane treatment of 6-amino-3-methoxy-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)pyrazolo[3,4-d]pyrimidin-4(5H)one ( 19 ), followed by sugar deprotection. Treatment of the adenine analog, 4-amino-1H-pyrazolo[3,4-d]pyrimidin-3(2H)-one ( 11 ), according to the high temperature glycosylation procedure yielded a mixture of N-1 and N-2 ribosyl-attached isomers. Deprotection of the individual isomers afforded 4-amino-3-hydroxy-1-βribofuranosylpyrazolo-[3,4-d]pyrimidine ( 26 ) and 4-amino-2-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-3(7H)-one ( 27 ). The structures of 26 and 27 were established by single crystal X-ray diffraction analysis. The inosine analog, 1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine-3,4(2H,5H)-dione ( 28 ), was synthesized enzymatically by direct ribosylation of 1H-pyrazolo[3,4-d]pyrimidine-3,4(2H,5H)-dione ( 8 ) with ribose-1-phosphate in the presence of purine nucleoside phosphorylase, and also by deamination of 26 with adenosine deaminase.  相似文献   

16.
The reaction of 3-(benzimidazol-2-yl)-2-iminocoumarins with aromatic aldehydes has been studied. The condensation products 7-aryl-7H-benzo[4,5]imidazo[1,2-c]benzopyrano[3,2-e]pyrimidines or 3-(benzimidazol-2-yl)coumarins are formed depending on the nature of the substituent in the starting 2-iminocoumarin and aldehyde. In DMF medium, 7-aryl-7H-benzo[4,5]imidazo[1,2-c]benzopyrano[3,2-e]pyrimidines isomerize to the corresponding 7-aryl-14H-benzo[4,5]imidazo[1,2-c]benzopyrano[3,2-e]pyrimidines. The effect of the substituent on the isomerization process has been studied and the reaction mechanisms are discussed.  相似文献   

17.
Several nucleoside derivatives of pyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione 1 and 2,4{1H,3H-pteridinedione 2 were prepared. Treating the appropriate silylated nucleobase with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofura-nose 3 in the presence of trimethylsilyl Inflate gave 4 and 8 which, upon debenzoylation, gave 5 and 9 , respectively. Treatment of 4 with phosphorus pentasulfide afforded the sulfur substituted compound 6 . Again, deprotection gave 7 . The arabinose derivatives were obtained by treating 1-O-acetyl-2,3,5-tri-O-benzoyl-D-arabinofuranose 10 with the silylated nucleobases to give 11 and 13 . Debenzoylation gave the free arabinonucleosides 12 and 14 respectively. The deoxy derivative 16 was prepared by the reaction of 1 with 1-chloro-3,5-di-O-acetyl-2-deoxy-D-ribofuranose 15 . Deacetylation of 16 with methanolic ammonia gave the α-anomer 17 .  相似文献   

18.
Ribosylation of trimethylsilyl derivative of 1-(4-nitrobenzyl)-5-carbamoylimidazolium-4-olate ( 5 ) with 1,2,3,5-tetra-O-acetyl-β- D -ribofuranose in the presence of stannic chloride and trimethylsilyl trifluoromethanesulfonate afforded no 5-O-glycosides but N-1 ribosylated compound ( 6 ). However, 5-O-riboside ( 7a ) and its orthoamide derivative ( 8 ) were given by glycosylation of tri-n-butylstannyl derivative of 5 with 2,3,5-tri-O-acetyl-β- D -ribofuranosyl chloride in the presence of silver trifluoromethanesulfonate. This procedure was successfully applied to other sugars and 5-O-glucuronide ( 11 ), a possible metabolite of 1 in vivo, was obtained as one of the 5-O-glycoside derivatives.  相似文献   

19.
The treatment of 4-chloro-7-(2′,3′,5′-tri-O-acetyl-β-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine ( 4 ) with N-bromoacetamide in methylene chloride has furnished the 5-bromo derivative of 4 which on subsequent deacetylation provided a good yield of 5-bromo-4-chloro-7-(β-D-ribo-furanosyl)pyrrolo[2,3-d] pyrimidine ( 6 ). Assignment of the halogen substituent to position 5 was made on the basis of pmr studies. Treatment of 6 with methanolic ammonia afforded 4-amino-5-bromo-7-(β-D-ribofuranosyl)pyrrolo[2,3-d ]pyrimidine ( 8 , 5-bromotubercidin) and a subsequent study has revealed that the 4-chloro group of 6 was replaced preferentially in a series of nucleophilic displacement reactions. The analogous synthesis of 4,5-dichloro-7-(β-D-ribo-furanosyl)pyrrolo[2,3-d]pyrimidine ( 13b ) and 4-chloro-5-iodo-7-(β-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine ( 13a ) from 4 furnished 5-chlorotubercidin ( 15 ) and 5-iodotubercidin ( 14 ), respectively, on treatment of 13b and 13a with methanolic ammonia. The possible biochemical significance of these tubercidin derivatives is discussed.  相似文献   

20.
Facile syntheses of pyrimido[4,5-c]pyridazine-5,7(6H,8H)diones 4 , pyrimido[4,5-c]pyridazin-5(8H)-ones 7–10 , and dihydropyrimido[4,5-c]pyridazin-5(6H)ones 5,6 starting from 3-chloro-4-pyridazinecarbonitrile 1 via aminocarbonitriles 2 and aminocarboxamides 3 are described. In addition, a convenient access to the new aminopyridazinecarbonitrile 11 from the chloronitrile 1, employing the tetrazolo[1,5-b]pyridazine 12 as the key intermediate, is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号