首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two-dimensional non-close-packed crystals of the protein streptavidin, grown on phospholipid membranes, can serve as nanoscale templates capable of directing the formation of ordered nanoparticle arrays through site-specific electrostatic adsorption. Here we examine the effects of both interparticle and nanoparticle/lipid membrane electrostatic interactions on the degree of structural order exhibited by the templated nanoparticle array. Interparticle electrostatic repulsion is shown to have only marginal influence on nanoparticle ordering. In contrast, the degree of order exhibited by the templated array can be tuned by controlling the charge on the lipid membrane. Analysis of the local and global structure of arrays generated with negatively charged gold nanoparticles (~6 nm) indicate improved long-range order when the lipid membrane supporting the protein crystal is derived from cationic lipid molecules as opposed to zwitterionic phospholipids. Furthermore, as nanoparticle size is reduced (~3 nm), the presence of a charged lipid membrane is found to be essential, as smaller particles do not adhere to streptavidin crystals grown on zwitterionic membranes. These findings demonstrate that the composition of the lipid support can influence the efficacy of directed-assembly processes which utilize protein templates and are important results toward enhancing control over bottom-up nanofabrication applications.  相似文献   

2.
The direct synthesis of CdSe nanoparticles inside the core of PS-P4VP micellar structures has been utilized for the easy fabrication of 2-D CdSe nanoparticle arrays with variable sizes on a solid substrate.  相似文献   

3.
Self-organization of large gold nanoparticle arrays   总被引:3,自引:0,他引:3  
  相似文献   

4.
The optical properties of silver nanocrystal arrays are investigated using spectroscopic ellipsometry in combination with polarized reflection measurements. Analysis of the ellipsometry and reflectometry spectra in terms of the "thin island film" theory enables a transparent identification of the contribution of collective effects to the optical response. Negligible image charge effects imply that only dipole contributions have to be considered. The interactions between the hexagonally ordered silver nanocrystals give rise to an effective modification of the spherical response to oblate entities with different polarizabilities parallel and perpendicular to the substrate, expressed in terms of corresponding depolarization factors. The effect of nanocrystal ordering, nearest-neighbor distance, size distribution, surrounding ambient, and the optical properties of the single nanocrystals on the optical response are analyzed. The extent of plasmon resonance peak splitting as a function of surface coverage is discussed.  相似文献   

5.
Single two-dimensional planar silver arrays and one-dimensional linear gold chains of nanoparticles were investigated by dark-field surface plasmon spectroscopy and studied as a function of interparticle distance, particle size, and number of particles. In agreement with recent theoretical predictions, a red shift of the surface plasmon resonance occurring in two-dimensional arrays was found for lattice spacings below 200 nm. This red shift is associated with a significant broadening of the resonance and is attributed to the onset of near-field interactions. We found that the relative contributions of the long-range and short-range interactions in two-dimensional arrays of particles are fundamentally different to those occurring in individual linear chains.  相似文献   

6.
This Minireview systematically examines optical properties of silver nanoparticles as a function of size. Extinction, scattering, and absorption cross-sections and distance dependence of the local electromagnetic field, as well as the quadrupolar coupling of 2D assemblies of such particles are experimentally measured for a wide range of particle sizes. Such measurements were possible because of the development of a novel synthetic method for the size-controlled synthesis of chemically clean, highly crystalline silver nanoparticles of narrow size distribution. The method and its unique advantages are compared to other methods for synthesis of metal nanoparticles. Synthesis and properties of nanocomposite materials using these and other nanoparticles are also described. Important highlights in the history of the field of metal nanoparticles as well as an examination of the basic principles of plasmon resonances are included.  相似文献   

7.
8.
Ordered NiO nanowire arrays embedded in anodic alumina membranes have been prepared by using an electrochemical deposition method. After annealing at 300 °C, the NiO nanowire arrays were characterized using SEM, TEM, SAED, and XRD. SEM and TEM observations reveal that these nanowires are dense, continuous and arranged roughly parallel to one another. XRD and SAED analysis together indicate that these NiO nanowires crystallize with a polycrystalline structure. The optical absorption band gap of NiO nanowire arrays is 3.74 eV, and no obvious blue shift or red shift with respect of that of the bulk NiO can be observed.  相似文献   

9.
Large-scale Ni-doped ZnO nanowire (NW) arrays are grown. The electrical conductivity of a single Ni-doped ZnO NW has been increased for 30 times. The photoluminescence (PL) spectrum of the doped ZnO NWs has a red shift, suggesting possible doping induced band edge bending. The doped NW arrays could be the basis for building integrated nanoscale transistors, sensors, and photodetectors.  相似文献   

10.
A scalable technique for making silica coatings with embedded two-dimensional arrays of iron oxide nanoparticles is presented. The iron oxide nanoparticle arrays were formed by depositing quasi-crystalline ferritin layers, an iron storage protein with an iron oxide mineral core, on solid substrates by a spread-coating technique based on evaporation-induced convective assembly. The layer of protein molecular arrays was then encapsulated in a silica matrix film deposited from a sol precursor. The organic protein shell of the ferritin molecules was then removed by controlled pyrolysis, leaving ordered iron oxide cores bound in the silica matrix. This article is the first report on combining convective self-assembly of proteins with sol-gel techniques of oxide film formation. The technique is technologically feasible and scalable to make coatings of encapsulated ordered magnetic clusters tens of cm(2) or larger in size.  相似文献   

11.
We study the dipolar coupling of gold nanoparticles arranged in regular two-dimensional arrays by extinction micro-spectroscopy. When the interparticle spacing approaches the plasmon resonance wavelength of the individual particles, an additional band of very narrow width emerges in the extinction spectrum. By systematically changing the particles dielectric environment, the particles shape, the grating constant and angle of incidence, we show how this band associated to a grating induced-resonance can be influenced in strength and spectral position. The spectral position can be qualitatively understood by considering the conditions for grazing grating orders whereas the strength can be related to the strength of dipolar scattering from the individual particles.  相似文献   

12.
The electronic properties of citrate stabilised Ag nanoparticles with sizes ranging from 4 to 35 nm were investigated by the Kelvin probe method and high resolution XPS. Two and three dimensional assemblies of the particles were prepared by electrostatic adsorption from aqueous solution onto poly-l-lysine modified surfaces. The work function of the Ag particles increased from 5.29 +/- 0.05 to 5.53 +/- 0.05 eV as the particle size decreased. These values are approximately 0.8 eV higher than for clean polycrystalline Ag surfaces. The origin of these remarkable high work functions cannot be explained in terms of either citrate induced changes in the surface dipole or image forces in the confined metallic domains. High resolution XPS spectra of the Ag 3d(5/2) core level were characterised by broad bands and a 0.4 eV shift towards lower binding energies for the smallest particles. Comparisons with reported studies on extended Ag surfaces indicate that as-grown particles exhibit partially oxidised surfaces. The behaviour of the work function further suggests that the strength of the Ag-O bonding increases with decreasing particle sizes. These findings are highly relevant to the interpretation of the catalytic properties of Ag nanoparticles.  相似文献   

13.
Self-assembling DNA tiling lattices represent a versatile system for nanoscale construction. Self-assembled DNA arrays provide an excellent template for spatially positioning other molecules with increased relative precision and programmability. Here we report an experiment using a linear array of DNA triple crossover tiles to controllably template the self-assembly of single-layer or double-layer linear arrays of streptavidin molecules and streptavidin-conjugated nanogold particles through biotin-streptavidin interaction. The organization of streptavidin and its conjugated gold nanoparticles into periodic arrays was visualized by atomic force microscopy and scanning electron microscopy.  相似文献   

14.
Frequency-scanned excitation profiles of coherent second harmonic generation (SHG) were measured for silver nanoparticle arrays prepared by nanosphere lithography. The frequency of the fundamental beam did not coincide with the localized surface plasmon resonance (LSPR) of the nanoparticles and was tuned so that the coherent second harmonic (SH) emission was in the region of the LSPR at 720-750 nm. The SH emission from the arrays was compared with a smooth silver film to identify an enhancement of SH emission efficiency that peaks near approximately 650 nm for nanoparticles 50 nm in height. The polarization and orientation dependence of this enhancement suggests that it is related to a dipolar LSPR mode polarized normal to the plane of the substrate. Linear extinction spectra are dominated by in-plane dipoles and do not show this weak out-of-plane LSPR mode. The nanoparticle arrays are truncated tetrahedrons symmetrically oriented by nanosphere lithography to cancel SH from in-plane dipoles which allows observation of the weak out-of-plane component.  相似文献   

15.
16.
By using the Pariser-Parr-Pople (PPP) theory, the second hyperpolarizabilities (gamma) have been calculated for various pi-conjugated porphyrin arrays including "porphyrin tapes": the meso-beta doubly linked porphyrin array Dn and the meso-meso, beta-beta, beta-beta triply linked array Tn. The validity of the PPP theory is checked via a comparison with both the ab initio Hartree-Fock and the B3LYP theories in the case of porphyrin monomers and dimers. It is found that Dn and especially Tn exhibit much more remarkable evolution of gamma/n along with an increasing number of porphyrin units n compared with the butadiyne-bridged array, Yn. As a result, the static third-order susceptibilities chi((3)) of Dn and Tn are expected to be 1 and 3 orders of magnitude larger than that of Yn in the limit n --> infinity, and these advantages of porphyrin tapes become more prominent by taking into account geometrical relaxations of porphyrin units in the arrays. The structure-property relationship in various conjugated polymers including porphyrin arrays is interpreted on the basis of the scaling behaviors of chi((1)) and chi((3)) with the effective conjugation length (ECL) as well as the reciprocal HOMO-LUMO energy gap (1/E(g)). In particular, from the master plot of chi((3)) (and even chi((1))) versus 1/E(g), the pi-conjugation of Tn is noted to indeed be exceptional, because its large susceptibilities cannot be expected from the scaling behavior of ordinary one-dimensional conjugated systems. We also point out that the theory of scaling relationship, chi((3)) approximately 1/E(g)(x)(), is significantly improved by taking into account electron-electron interactions based on the comparison with experiments.  相似文献   

17.
Formation of ordered arrays of oriented polyaniline nanoparticle nanorods   总被引:3,自引:0,他引:3  
We report the preparation of ordered polyaniline (PANI) nanorod arrays in an aqueous medium. The oriented PANI nanorods (80-400 nm in diameter and 8-15 mum in length) were synthesized in the presence of hydrophilic Allura Red AC (ARAC) as the structure-directing agent and ammonium persulfate as an oxidant in HCl solution. The morphologies of the oriented PANI nanoparticle nanorods were confirmed by scanning electron microscopy (SEM) and transmission electron microscopy images, and the effect of reaction conditions on the morphology of PANI nanostructures was also studied. On the basis of the result obtained from small-angle X-ray scattering, we propose that rodlike micelle arrays of ARAC-aniline are responsible for directing the formation of oriented PANI nanoparticle nanorods. SEM images and the data analysis of static and dynamic light scattering give supportive evidence to the formation of the PANI nanoparticle nanorods by an elongation process. The chemical and electronic structures of the PANI nanorods were also studied by Fourier transform IR and UV-vis spectrometries, respectively.  相似文献   

18.
Optical cavities hold great promise to manipulate and control the photochemistry of molecules. We demonstrate how molecular photochemical processes can be manipulated by strong light–matter coupling. For a molecule with an inherent conical intersection, optical cavities can induce significant changes in the nonadiabatic dynamics by either splitting the pristine conical intersections into two novel polaritonic conical intersections or by creating light-induced avoided crossings in the polaritonic surfaces. This is demonstrated by exact real-time quantum dynamics simulations of a three-state two-mode model of pyrazine strongly coupled to a single cavity photon mode. We further explore the effects of external environments through dissipative polaritonic dynamics computed using the hierarchical equation of motion method. We find that cavity-controlled photochemistry can be immune to external environments. We also demonstrate that the polariton-induced changes in the dynamics can be monitored by transient absorption spectroscopy.

Optical cavities hold great promise to manipulate and control the photochemistry of molecules.  相似文献   

19.
Polyacrylamide (PAL) was physically adsorbed onto a hydroxylated silicon surface to form a uniform PAL film and the up-top PAL thin film was treated by nitrogen (N2) plasma for surface modification. The atomic composition of the modified surface of the PAL film adsorbed on silicon substrate was analyzed with Fourier Transform Infrared Spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The surface energy of PAL film was calculated from the data of contact angle of three-probe liquid. The FTIR results show an increase of peak intensity at 1214 cm−1 (NH2 stretch vibration) after the nitrogen plasma treatment, which confirms that the nitrogen was grafted to the PAL surface in the process of N2-plasma treatment. The XPS results show that the ratio of relative intensity of N1s to O1s increases with increasing the plasma treatment time, which further affirms the formation of the amine groups on the PAL surface after the nitrogen plasma treatment. The surface tension increases with increasing the plasma grafting time. However, the surface energy decreases rapidly at the early stage when stored in air and approaches to an equilibrium value. It suggests that some physically-adsorbed ions and alkyl radicals on PAL surface can rapidly lose their activities. The increase of the surface tension of the plasma treated PLA films is due to the amine groups covalently grafted to PAL surface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号