首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel aromatic dicarboxylic acid monomer, 4,4′-(2,3-naphthalenedioxy)-dibenzoic acid ( 3 ), was prepared by the fluorodisplacement reaction of p-fluorobenzonitrile with 2,3-dihydroxynaphthalene in N,N-dimethylformamide (DMF) in the presence of potassium carbonate followed by alkaline hydrolysis of the intermediate dinitrile. A series of novel aromatic polyamides containing ortho-linked aromatic units in the main chain were synthesized by the direct polycondensation of diacid 3 and a variety of aromatic diamines using triphenyl phosphite and pyridine as condensing agents in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides had inherent viscosities higher than 0.74 and up to 2.10 dL/g. All of these polyamides were soluble in polar solvents, such as NMP, DMF, N,N-dimethylacetamide (DMAc), and dimethyl sulfoxide. Transparent, flexible, and tough films could be cast from their DMAc or NMP solutions. The solvent-cast films had high tensile strengths and moduli. Extensions to break were relatively low, except for the polymers derived from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and 3,4′-oxydianiline, which had elongations of 82 and 62%, respectively. Except for the polyamide based on p-phenylenediamine, all the other polyamides were amorphous in nature. All the polymers are thermally stable to temperatures in excess of 450°C in either air or nitrogen atmosphere. The polymers exhibited glass transition temperatures ranging from 183 to 260°C and decomposition temperatures (10% weight loss) ranging from 462–523°C in air and 468–530°C in nitrogen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3385–3391, 1997  相似文献   

2.
1,1-Bis[4-(4-carboxyphenoxy)phenyl]cyclohexane (III) and 1,1-bis[4-(4-aminophenoxy)phenyl]cyclohexane (V) were prepared in two main steps starting from the aromatic nucleophilic substitution of p-fluorobenzonitrile and p-chloronitrobenzene, respectively, with 1,1-bis(4-hydroxyphenyl)cyclohexane in the presence of potassium carbonate in N,N-dimethylformamide (DMF). Using triphenyl phosphite and pyridine as condensing agents, two series of polyamides with cyclohexylidene cardo groups were directly polycondensated from dicarboxylic acid III with various aromatic diamines or from diamine V with various aromatic dicarboxylic acids in an N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The polyamides exhibited inherent viscosities in the range of 0.45 to 1.78 dL/g. Almost all of the polymers were readily soluble in polar aprotic solvents such as NMP and N,N-dimethylacetamide (DMAc) and could afford transparent, flexible, and tough films by solution casting. The glass transition temperatures (Tg) of these aromatic polyamides were in the range of 180–243°C by DSC, and the 10% weight loss temperatures in nitrogen and air were all above 450°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3575–3583, 1999  相似文献   

3.
The synthesis and characterization of a series of novel poly(aryl amide imide)s based on diphenyltrimellitic anhydride are described. The poly(aryl amide imide)s, having inherent viscosities of 0.39–1.43 dL/g in N-methyl-2-pyrrolidinone at 30°C, were prepared by polymerization with aromatic diamines in N,N-dimethylacetamide and subsequent chemical imidization. All the polymers were amorphous, readily soluble in aprotic polar solvents such as DMAC, NMP, dimethylsulfoxide, N,N-dimethylformamide, and m-cresol, and could be cast to form flexible and tough films. The glass transition temperatures were in the range of 284–366°C, and the temperatures for 5% weight loss in nitrogen were above 468°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4541–4545, 1999  相似文献   

4.
Fully imidized random amide imide copolymers (rPAI) can be prepared in an aprotic solvent from trimellitic anhydride chloride (TMAc) and mixtures of various aromatic diamines via condensation polymerization. The polymers are soluble in a number of aprotic organic solvents including 1‐methyl‐2‐pyrrolidinone (NMP), N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide (DMF), and dimethylsulfoxide (DMSO). The gas transport properties of the rPAI materials are governed by the local structure around both the amide and imide linkages and can be tuned by the choice and ratio of diamines used. Significant improvement in selectivity relative to polyimides can be achieved. When inorganic carbonate salts are used to scavenge byproduct hydrogen chloride, the amount of residual salt in the dense films has a substantial effect on their gas transport properties. A fugitive salt process was identified, which eliminated this problem of residual inorganic salts. The activation energy for O2, N2, He, CO2, and CH4 permeability was determined for one of the copolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1951–1965, 2000  相似文献   

5.
The solution, gelation, and morphological properties of monodisperse aromatic polyamide diblock copolymers consisting of poly(p‐benzamide) (PpBA), poly(m‐benzamide) (PmBA), and poly(N‐octyl m‐benzamide) (POmBA) were investigated. The block copolymers of these polymers, PpBA‐block‐POmBA and PmBA‐block‐POmBA, formed spherical micelles or amorphous aggregates in many solvents in addition to physical gels at concentrations higher than 5 wt %. A temperature‐induced sol‐gel transition was also exhibited for PpBA‐block‐POmBA in solvents with high boiling points such as N,N‐dimethylacetamide and N‐methylpyrrolidone (NMP), although the transition was not entirely thermoreversible; the transition temperature decreased by annealing at ~80 °C. Dynamic light scattering measurements of the PpBA‐block‐POmBA/NMP solutions revealed that metastable micelles in the sol state reorganized into smaller micelles upon annealing at 90 °C. The block copolymer, which forms strong associations, exhibited some transient structure as indicated by the need to sufficiently anneal the solution to reach equilibrium. Network‐like patterns with characteristic length of ~10 μm appeared on the gel surfaces upon evaporation of volatile solvents such as dichloromethane and chloroform, in which the copolymers were observed to aggregate. The unique properties of the copolymers originate from interactions between the highly polar N? H aromatic polyamide blocks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1732–1739, 2010  相似文献   

6.
New heterocyclic polyamides have been synthesized by solution polycondensation of aromatic diamines containing phenylquinoxaline units with diacid chlorides having both imide and hexafluoroisopropylidene (6F) groups. These polymers are soluble in polar aprotic solvents, such as N-methylpyrrolidone (NMP) or N, N-dimethylformamide (DMF), and can be cast into flexible thin films from solutions. They show high thermooxidative stability with decomposition temperatures above 400°C and glass transition temperatures in the range of 225-300°C. The polymer films exhibit good chemical resistance towards diluted acids and good electrical insulating properties with dielectric constants in the range of 3.2–3.7.  相似文献   

7.
Reaction of sulfinylaminobenzoyl chlorides with lead thiocyanate gave sulfinylaminobenzoyl isothiocyanates (SBIs), from which were derived aminobenzoyl isothiocyanate hydrochlorides (ABIHs). AB polyacylthioureas (PATUs) with inherent viscosities of up to 0.28 dL/g were obtained by treating the SBI with an equivalent of water in N-methyl-2-pyrrolidone (NMP). Low-temperature solution polyaddition of the ABIH afforded AB PATU with inherent viscosities of up to 0.66 dL/g, which were further increased to as high as 0.75 dL/g by adding lithium bases to the polymerization mixtures. Polyaddition of isophthaloyl diisothiocyanate with intermediate diamines formed by hydrolyzing the adducts of SBI and aromatic diamines afforded copolyacylthioureas with inherent viscosities of up to 1.15dL/g. The copolymers were generally soluble in NMP, whereas solubilities of the AB PATU in analogous solvents were relatively low. Thermogravimetric analyses in both air and nitrogen exhibited weight losses of 5% at 204–236°C for AB PATU and at 170–192°C for the copolymers.  相似文献   

8.
Two ether-sulfone-dicarboxylic acids, 4,4′-[sulfonylbis(2,6-dimethyl-1,4-phenylene)dioxy]dibenzoic acid (Me- III ) and 4,4′-[sulfonylbis(1,4-phenylene)dioxy]-dibenzoic acid ( III ), were prepared by the fluorodisplacement of 4,4′-sulfonylbis(2,6-dimethylphenol) and 4,4′-sulfonyldiphenol with p-fluorobenzonitrile, and subsequent alkaline hydrolysis of intermediate dinitriles. Using triphenyl phosphite (TPP) and pyridine as condensing agents, aromatic polyamides containing ether and sulfone links were prepared by the direct polycondensation of the dicarboxylic acids with various aromatic diamines in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The inherent viscosities of the resulting polymers were above 0.4 dL/g and up to 1.01 dL/g. Most of the polyamides were readily soluble in polar solvents such as NMP, N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO), and afforded tough and transparent films by solution-casting. Most of the polymers showed distinct glass transition on their differential scanning calorimetry (DSC) curves, and their glass transition temperatures (Tg) were recorded between 212–272°C. The methyl-substituted polyamides showed slightly higher Tgs than the corresponding unsubstituted ones. The results of the thermogravimetry analysis (TGA) revealed that all the polyamides showed no significant weight loss before 400°C, and the methyl-substituted polymers showed lower initial decomposition temperatures than the unsubstituted ones. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2421–2429, 1997  相似文献   

9.
Novel aromatic polyamides were prepared from aromatic diamine containing 4,5-imidazolediyl unit, either by low temperature solution polycondensation or by direct polycondensation. Used diamines were 4,5-bis(4-aminophenyl)-2-phenylimidazole 1, 4,5-bis[4-(4-aminophenyl)]-2-(4-methylphenyl)imidazole 2 and 4,5-bis[4-(4-aminophenoxy)phenyl]-2-phenylimidazole 3. The obtained aromatic polyamides were produced with moderate to high inherent viscosity and soluble in polar aprotic solvents such as N,N-dimethylacetamide (DMAc), 1-methyl-2-pyrrolidone (NMP), N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). Thermogravimetric analysis showed those polymers were stable up to 422°C in nitrogen atmosphere. The glass transition temperature (T g)s of the polymers derived from diamine 3 were in the range between 243 and 275°C, and these values were approximately 120–160°C lower than those analogue polyamide I series containing no phenoxy units. The properties of polyamide I series are also compared with those of analogue polymers that order of aromatic nuclei and amide linkage is reversible.  相似文献   

10.
N-Phenyl-3,3-Bis[4-(p-aminophenoxy)phenyl] phthalimidine ( II ) was used as a monomer with various aromatic dicarboxylic acids and tetracarboxylic dianhydrides to synthesize polyamides and polyimides, respectively. The diamine II was derived by a nucleophilic substitution of N-phenyl-3,3-bis(4-hydroxyphenyl) phthalimidine with p-chloronitrobenzene in the presence of K2CO3 and then hydro-reduced. Polyamides IV a-g having inherent viscosities of 0.55–1.64 dL/g were prepared by the direct polycondensation of the diamine II with various aromatic diacids using triphenyl phosphite and pyridine as condensing agents. All the aromatic polyamides were amorphous and readily soluble in various polar solvents such as N,N-dimethylacetamide (DMAc), N,N-dimethylformamide, dimethylsulfoxide, and N-methyl-2-pyrrolidone (NMP). Transparent and flexible films of these polymers could be cast from the DMAc solutions. These aromatic polyamides had glass transition temperatures in the range of 293–319°C and 10% weight loss occurred up to 480°C. The polyimides were synthesized from diamine II and various aromatic dianhydrides via the two-stage procedure that included ring-opening polyaddition in DMAc to give poly(amic acid)s, followed by thermal or chemical conversion to polyimides. Most of the aromatic polyimides obtained by chemical cyclization were found to be soluble in NMP, m-cresol, and o-chlorophenol. These polyimides showed almost no weight loss up to 500°C in air or nitrogen atmosphere. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
5,5-Bis[4-(4-carboxyphenoxy)phenyl]hexahydro-4,7-methanoindan ( 3a ) and 5,5-bis[4-(4-aminophenoxy)phenyl]hexahydro-4,7-methanoindan ( 3b ) were prepared in two main steps starting from the aromatic nucleophilic halogen-displacement of p-fluorobenzonitrile and p-chloronitrobenzene, respectively, with 5,5-bis(4-hydroxyphenyl)hexahydro-4,7-methanoindan in the presence of potassium carbonate in N,N-dimethylformamide (DMF). Using triphenyl phosphite and pyridine as condensing agents, two series of polyamides having polyalicyclic cardo units were directly polycondensated from dicarboxylic acid 3a with various aromatic diamines, or from diamine 3b with various aromatic dicarboxylic acids in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. High molecular weight polyamides with inherent viscosities between 0.73 and 1.44 dL/g were obtained. All polymers were readily soluble in polar aprotic solvents such as NMP and N,N-dimethylacetamide (DMAc) and afforded transparent, flexible, and tough films by solution casting. The glass-transition temperatures (Tg) of these aromatic polyamides were in the range of 219–253°C by DSC, and the 10% weight loss temperatures in nitrogen and air were above 467 and 465°C, respectively. A comparative study of some polyamides with an isomeric repeat unit is also presented. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4510–4520, 1999  相似文献   

12.
A series of novel bis(phenoxy)naphthalene-containing polyamides having inherent viscosity up to 2.02 dL/g were synthesized by the direct polycondensation of the diamine 1,7-bis(4-aminophenoxy)naphthalene with various aromatic dicarboxylic acids in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Most of the polyamides could be readily dissolved in polar aprotic solvents such as N,N-dimethylacetamide and NMP, and could be solution-cast into transparent, flexible, and tough films. These polymers had glass transition temperatures in the range of 139–263°C, and 10% weight loss temperatures in nitrogen and air were above 499 and 484°C, respectively. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
A new bis(phenoxy)naphthalene-containing diamine, 1,6-bis(4-aminophenoxy)naphthalene, was synthesized in two steps from the condensation of 1,6-dihydroxynaphthalene with p-chloronitrobenzene in the presence of potassium carbonate, giving 1,6-bis(4-nitrophenoxv)naphthalene, followed by hydrazine hydrate/Pd—C reduction. A series of polyamides were synthesized by the direct polycondensation of the diamine with various aromatic dicarboxylic acids in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved metal salts such as CaCl2 or LiBr using triphenyl phosphite and pyridine as condensing agents. The polymers were obtained in quantitative yield with inherent viscosities of 0.78–3.72 dL/g. Most of the polymers were soluble in aprotic solvents such as N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), NMP, and they could be solution-cast into transparent, flexible and tough films. The casting films had tensile strength of 102–175 MPa, elongation at break of 8–42%, and tensile modulus of 2.4–3.8 GPa. The polymers derived from rigid dicarboxylic acids such as terephthalic acid and 4,4′-biphenyldicarboxylic acid exhibited some crystalline characteristics. The glass transition temperatures of the polyamides were in the range of 238–337°C, and their 10% weight loss temperatures were above 487°C in nitrogen and above 438°C in air. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
A dicarboxylic acid ( 1 ) bearing two pre-formed imide rings, was prepared from the condensation of 2,2-bis[4-(4-aminophenoxy)phenyl]propane and trimellitic anhydride. A new family of poly(amide-imide)s having inherent viscosities of 0.53–1.68 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide—diacid I with various aromatic diamines in a medium consisting of N-methyl-2-pyrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these poly(amide-imide)s were in the range of 237–293°C and the 10% weight loss temperatures were above 508°C in nitrogen. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
New poly(amide–imide)s were prepared from a diimide–dicarboxylic acid, 1,4-bis(4-trimellitimidophenoxy)-2-tert-butylbenzene ( BTTB ), with various diamines by the direct polycondensation in N-methyl-2-pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. The new diimide–dicarboxylic acid BTTB containing an ether linkage and tert-butyl substituent was synthesized by the condensation reaction of 1,4-bis(4-aminophenoxy)-2-tert-butylbenzene with trimellitic anhydride. All the polymers were obtained in quantitative yields with inherent viscosities of 0.62–1.06 dL g−1. The polymers were amorphous, and most of them were readily soluble in aprotic polar solvents such as NMP, N,N-dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF), as well as in less polar solvents such as dimethyl sulfoxide (DMSO), m-cresol, pyridine, and γ-butyrolactone, and also even in tetrahydrofuran. The glass transition temperatures of the polymers were determined by DSC method, and they were in the range of 238–279°C. These polymers were stable up to 408–449°C in air and 451–483°C in nitrogen and lose 10% weight in the range of 479–525°C in air and 480–528°C in nitrogen atmosphere. The polymer films had a tensile strength range of 71–115 MPa, an elongation at break range of 4–14%, and a tensile modulus range of 2.3–3.1 GPa. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2301–2307, 1998  相似文献   

16.
A series of photoactive polyamides (PAs) containing acetoxynaphthalamide side chain with inherent viscosities of 0.27–0.56 dl g?1 were prepared by the direct polycondensation reaction of the 5‐(3‐acetoxynaphthoylamino)isophthalic acid with various commercially available diamines by means of triphenyl phosphite (TPP) and pyridine (Py) in the presence of calcium chloride and N‐methyl‐2‐pyrrolidone (NMP) under microwave irradiation and conventional heating conditions. Most of the resulting PAs are soluble in strong polar solvents such as N,N‐dimethylformamide (DMF), N,N‐dimethylacetamide, and NMP. Thermo‐gravimetric analysis (TGA) showed that polymers are thermally stable, 10% weight loss temperatures in excess of 320 and 378°C, and char yields at 600°C in nitrogen higher than 60%. These macromolecules exhibited maximum UV‐Vis absorption at 265 and 300 nm in a DMF solution. Their photoluminescence in the DMF solution demonstrated fluorescence emission maxima around 361 and 427 nm for all of the PAs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A series of novel poly(amine amide)s ( IIa – IIl ) with pendent N‐carbazolylphenyl units having inherent viscosities of 0.25–1.06 dL/g were prepared via direct phosphorylation polycondensation from various dicarboxylic acids and a carbazole‐based aromatic diamine. Except for poly(amine amide) IIc , derived from trans‐1,4‐cyclohexanedicarboxylic acid, all the other amorphous poly(amine amide)s were readily soluble in many polar solvents, such as N,N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone (NMP), and could be cast into transparent and flexible films. The aromatic poly (amine amide)s had useful levels of thermal stability associated with relatively high glass‐transition temperatures (268–331 °C), 10% weight loss temperatures in excess of 540 °C, and char yields at 800 °C in nitrogen higher than 60%. These polymers exhibited maximum ultraviolet–visible absorption at 293–361 nm in NMP solutions. Their photoluminescence in NMP solutions exhibited fluorescence emission maxima around 362 and 448–499 nm for aromatic–aliphatic poly(amine amide)s IIa – IIc and aromatic poly (amine amide)s IId – IIl , respectively. The fluorescence quantum yield in NMP solutions ranged from 0.34% for IIj to 4.44% for IIa . The hole‐transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the poly(amine amide) films cast onto an indium tin oxide coated glass substrate exhibited reversible oxidation at 0.81 V and irreversible oxidation redox couples at 1.20 V versus Ag/AgCl in acetonitrile solutions, and they revealed excellent stability of the electrochromic characteristics, with a color change from yellow to green at applied potentials ranging from 0.00 to 1.05 V. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4108–4121, 2006  相似文献   

18.
The five benzene rings-containing (hereafter referred to as “five-ring”) dicarboxylic acids α,α′-bis[4-(4-carboxyphenoxy)phenyl]-1,4-diisopropylbenzene (p- III ) and α,α′-bis[4-(4-carboxyphenoxy)phenyl]-1,3-diisopropylbenzene (m- III ) were prepared by the fluoro-displacement of α,α′-bis(4-hydroxyphenyl)-1,4-diisopropylbenzene and α,α′-bis(4-hydroxyphenyl)-1,3-diisopropylbenzene with p-fluorobenzonitrile, and subsequent alkaline hydrolysis of the intermediate dinitriles. A number of high-molecular-weight polyamides based on these two “five-ring” dicarboxylic acids (p- III and m- III ) and various aromatic diamines were directly synthesized in N-methyl-2-pyrrolidone (NMP) containing lithium chloride (LiCl) or calcium chloride (CaCl2) using triphenyl phosphite and pyridine as condensing agents. These polyamides were obtained with inherent viscosities above 0.51 and up to 0.91 dL/g. The weight-average molecular weight were in the range of 51,000–211,000. Most of these polyamides were amorphous and readily soluble in polar solvents such as NMP, N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO), and afforded tough, flexible, and transparent films by solution-casting. The films had tensile strength of 50–83 MPa, elongation to break of 4–8%, and tensile modulus of 1.3–2.0 GPa. Most polyamides showed distinct glass transitions on the differential scanning calorimetry (DSC) curves ranging from 147 to 177°C. In nitrogen or air, all the polymers showed no significant weight loss up to 490°C, as indicated by thermogravimetric analysis (TG). © 1996 John Wiley & Sons, Inc.  相似文献   

19.
3,3-Bis[4-(4-aminophenoxy)phenyl]phthalide ( II ) was used as a monomer with various aromatic dicarboxylic acids and dianhydrides to synthesize polyamides and polyimides, respectively. The diamine II was derived by a nucleophilic substitution of phenolphthalein with p-chloronitrobenzene in the presence of K2CO3. Polyamides IV a-g having inherent viscosities of 0.77–2.46 dL/g were prepared by the direct polycondensation of diamine II with diacids III a-g using triphenyl phosphite and pyridine as condensing agents. The polyamides were readily soluble in a variety of solvents such as N, N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), and N-methyl-2-pyrrolidinone (NMP) and afforded transparent and flexible films from the polymer solutions. These polymers had glass transition temperatures (Tgs) in the 227–307°C range and 10% weight loss temperatures occurred up to 450°C. Polyimides VI a-e based on diamine II and various aromatic dianhydrides V a-e were synthesized by the two-stage procedure that included ring-opening, followed by thermal or chemical conversion to polyimides. Most of the polyimides obtained by chemical cyclodehydration procedure were found to soluble in DMF, NMP, o-chlorophenol, and m-cresol. The Tgs of these polyimides were in the 260–328°C range and showed almost no weight loss up to 500°C under air and nitrogen atmosphere. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
4,4′-(2,7-Naphthalenedioxy)dibenzoic acid, a new aromatic dicarboxylic acid monomer, was prepared starting from 2,7-dihydroxynaphthalene and p-fluorobenzonitrile in three steps. Using triphenyl phosphite (TPP) and pyridine as condensing agents, a series of novel aromatic polyamides were synthesized by the direct polycondensation of the diacid monomer and aromatic diamines in N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides had inherent viscosities ranging from 0.48 to 0.67 dL/g. Most of these polyamides were readily soluble in polar solvents, such as NMP and N,N-dimethylacetamide (DMAc). Transparent, flexible, and tough films were cast from their DMAc solutions. They had tensile strengths of 65–70 MPa, elongations to break of 5–7%, and initial moduli of 1.4–1.6 GPa. Most of these polymers proved to be amorphous, with glass transition temperatures in the range between 143–227°C. Thermogravimetric analysis (TG) showed that all the polyamides were stable up to 450°C in both air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1469–1478, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号