首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isotherms of chlorobenzene adsorption on V2O5/-Al2O3 catalyst within the 0.07-18 Pa range of adsorbate partial pressure were measured, and certain thermodynamic characteristics of adsorption were found.  相似文献   

2.
Theoretical and Experimental Chemistry - It is shown that the KF/γ-Al2O3 catalyst obtained by the sol–gel method has a greater activity in the process of transesterification of methanol...  相似文献   

3.
4.
The novel sol-gel SnO2/Al2O3 catalysts for selective catalytic reduction NO by propene under lean burn condition were investigated. The results showed thatthe maximum NO conversion was 82% on the SnO2/Al2O3 (5%Sn) catalyst, and the presence of H20 and SO2 improved the catalytic activity at low temperature. The catalytic activity of NO2 reduction by propene is much higher than that of NO at the entire temperature range, and the maximum NO2 conversion reached nearly 100% around the temperature 425℃.  相似文献   

5.
Adsorption of benzene on the V2O5/-Al2O3 catalysts was studied in the temperature interval from 443 to 493 K and at partial pressures of the adsorbate ranging from 1 to 400 Pa. The adsorption isotherms were plotted. The isosteric heats and various entropy characteristics of adsorption were determined. Mobility of benzene in the adsorption layer is restricted compared to the model of ideal dimeric gas. The adsorbed amounts of benzene and chlorobenzene are compared.  相似文献   

6.
Nickel-based catalysts supported on -Al2O3 for the partial oxidationof methane were activated by a glow discharge plasma technique. Theactivating process was simple, quick, audio-visual, and easy to control. Theactivity and stability of the activated catalyst were higher than those ofconventional catalysts. The methane conversion of 98.2% and selectivity of97.3% to hydrogen and 96.5% to carbon monoxide were obtained at850°C. The catalyst could maintain its activity over 15 hr. According tothe results of X-ray diffraction (XRD) and temperature-programmed reduction(TPR), the component of crystal phase and the reducibility of the activatedcatalyst were significantly different from those of conventionalcatalysts.  相似文献   

7.
Russian Journal of Physical Chemistry A - It is shown that glycerol hydrogenation in the presence of Ni/F–Al2O3 catalyst leads to the formation of simple alcohols ethanol and propanol-1. The...  相似文献   

8.
The effect of vanadium addition to CU/γ-Al2O3 catalyst used in the hydrogenation of CO2 to produce methanol was studied. It was found that the catalytic performance of the Cu-based catalyst improved after V addition. The influence of reaction temperature, space velocity and the molar ratio of H2 to CO2 on the performance of 12%Cu-6%V/γ-Al2O3 catalyst were also studied. The results indicated that the best conditions for reaction were as follows: 240℃, 3600 h-1 and a molar ratio of H2 to CO2 of 3:1. The results of XRD and TPR characterization demonstrated that the addition of V enhanced the dispersion of the supported CuO species, which resulted in the enhanced catalytic performance of CU-V/γ-Al2O3 binary catalyst.  相似文献   

9.
Solid-phase reactions in the aluminum–manganese oxide system, including the structural mechanism of the thermal activation of catalysts, were studied at temperatures up to 1100°C. It was found that the solid-phase reaction at 900–1000°C occurred via two pathways because of the diffusion of manganese ions to aluminum oxide and aluminum ions to manganese oxide. Nanoheterogeneous state of the active component, which was observed in the range 25–600°C, is the product of incomplete decomposition of the high-temperature aluminum–manganese phase Mn2.1 – x Al0.9 + x O4 (0 x 0.6) with a cubic spinel structure; this phase was equilibrium at the synthesis temperature but metastable below 650°C.  相似文献   

10.
The stereoselective hydrogenation of 2-hexyne in ethanol on Cu/-Al2O3 catalysts (1–40 % Cu) at 4–10 atm and 80–120 °C has been studied. The reaction affordscis-2-hexene as the only reaction product in 100 % yield at [Cu] 30 %. For samples with 20 % Cu, hydrogenation proceeds in parallel with absorption of H2 by the catalyst.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1314–1315, July, 1993.  相似文献   

11.
朱月香  熨继英 《分子催化》2000,14(3):166-170
设计了一系列的对比实验,利用XRD,XPS,TPR,EXAFS等技术,系统研究了CuCl/γ-Al2O3上的NO脱除反应过程。结果发现,CuCl/γ-Al2O3样品暴露在空气中,表面被部分氧化生成CuCl2及CuO等,在高温处理和反应过程中,造成样品表面氯的损失,同时生成更多的CuO,因而得新还原处理后测活性时,得到高分散的金属铜,使样品的NO分解活性提高,但由于NO对低价铜有很强的氧化作用,NO  相似文献   

12.
13.
用浸渍法制备了CuO/γ-Al2O3催化剂和CeO2改性的CeO2-CuO/γ-Al2O3催化剂,考察了焙烧温度对CuO/γ-Al2O3和CeO2-CuO/γ-Al2O3催化剂C3H6还原NO反应活性的影响,以及CeO2的添加量对CeO2-CuO/γ-Al2O3催化剂C3H6还原NO反应活性的影响。结果表明,在200 ℃~500 ℃的焙烧温度范围内,焙烧温度对CuO/γ-Al2O3催化剂的活性影响很小;在500 ℃~800 ℃的焙烧温度范围内,随着焙烧温度的升高CuO/γ-Al2O3催化剂的活性急剧下降,由XRD物相测定结果可知,归因于对反应表现惰性的尖晶石CuAl2O4相的生成。当焙烧温度为500 ℃时,CeO2的添加对CuO/γ-Al2O3催化剂的活性影响很小;当焙烧温度为800 ℃时,CeO2的添加对CuO/γ-Al2O3催化剂有明显的助催化作用,当Ce和Cu的摩尔比为1∶10时,NO转化率较为理想。  相似文献   

14.
15.
Kinetics and Catalysis - Low-temperature oxidation of carbon monoxide on the Pd/γ-Al2O3 catalyst has been studied at room temperature and atmospheric pressure of air containing 100 mg/m3 CO....  相似文献   

16.
采用HCl和NaOH改性γ-Al2O3载体制备AlCl3/γ-Al2O3固载催化剂,用吡啶-FTIR和吡啶-TPD技术分析了催化剂的表面酸性(酸中心类型、酸强度和酸量),并以1-癸烯齐聚作为探针反应,研究了催化剂的稳定性以及催化剂对聚合反应的影响.结果表明,催化剂含有两种酸类型,即Lewis酸和Br(o)nsted酸,与未改性的催化剂相比,氢氧化钠改性载体制备的催化剂,酸量增大了47%,催化剂催化1-癸烯的齐聚反应活性增加了11.4%;而经盐酸改性制备的催化剂酸量增大112%,催化剂的活性增加了33.6%.酸强度依AlCl3/γ-Al2O3,AlCl3/γ-Al2O3(NaOH),AlCl3/γ-Al2O3 (HCl)的顺序增强.  相似文献   

17.
The kinetics of oxidative cracking of n-hexane to light olefins using the lattice oxygen of VOx/SrO-γAl2O3 catalysts has been investigated. Kinetic experiments were conducted in a CREC Riser Simulator (CERC: Chemical Reactor Engineering Center), which mimics fluidized bed reactors. The catalyst's performance is partly attributed to the moderate interaction between active VOx species and the SrO-γAl2O3 support. This moderate interaction serves to control the release of lattice oxygen to curtail deep oxidation. The incorporation of basic SrO component in the support also helped to moderate the catalyst's acidity to checkmate excessive cracking. Langmuir-Hinshelwood model was applied to formulate the rate equations. The intrinsic kinetic parameters were obtained by fitting the experimental data to the kinetic model using a nonlinear regression algorithm at a 95% confidence interval, implemented in MATLAB. n-Hexane transforms to olefins at a specific reaction rate of 1.33 mol/gcat.s and activation energy of 119.2 kJ/mol. These values when compared with other duplets (i. e., ki° and EA) for paraffins to olefins, show that indeed olefins are stable products of the oxidative conversion of n-hexane over VOx/SrO-γAl2O3 under a fluidized bed condition. Values of activation energy for all COx formation routes indicate that intermediate paraffins are likely to be cracked to form CH4 than to be converted directly to COx. On the other hand, olefins may transform partly, and directly to COx (E9=9.65 kJ/mol) than to form CH4 (E8=89.1 kJ/mol) in the presence of excess lattice oxygen. Overall, olefins appear to be stable to deep oxidation due to the role of SrO in controlling the amount of lattice oxygen of the catalyst at the reaction temperature.  相似文献   

18.
Tong  DING  Yong  Ning  QIN 《中国化学快报》2003,14(3):319-322
The Pd-B/γ-Al2O3 amorphous alloy catalyst and Pd/γ-Al2O3 crystalline metal catalyst were prepared by KBH4 reduction and routine impregnation,respectively.Pd-B/γ-Al2O3 and Pd/γ-Al2O3 catalysts were characterized by XRD and SEM.It was found that the catalytic activity of the Pd-B/γ-Al2O3 amorphous alloy catalyst was higher than that of the Pd/γ-Al2O3 crystalline metal catalyst in the anthraquinone hydrogenation.  相似文献   

19.
Destructive tests of the catalyst was carried out to study the effect of temperature on the catalytic activity of CO coupling to diethyl oxalate (DEO) over a Pd-Fe/Al2O3 catalyst. It was found that a temperature jump could cause the deactivation of the Pd-Fe/α-Al2O3 catalyst. The catalyst deactivated at different temperatures has different characteristics. After deactivation the crystal structure of α-Al2O3 did not change, but the Pd particle size was enlarged. Most of the Pd^0 were oxidized to Pd^2 . and Fe^2 was oxidized to Fe^3 on the surface of the deactivated catalyst. The catalyst could be regenerated, but its original activity could not be recovered completely.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号