首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2-aminopyridine.2-pyridone complex (2AP.2PY) is linked by antiparallel N-H.O=C and N-H.N hydrogen bonds, providing a model for the Watson-Crick hydrogen bond configuration of the adenine-thymine and adenine-uracil nucleobase pairs. Mass-selected S(1) <--> S(0) vibronic spectra of the supersonically cooled 2AP.2PY base pair analogue were measured by laser resonant two-photon ionization and emission spectroscopies. The hydrogen bond vibrations nu(2) (buckle, out-of-plane) and the three in-plane vibrations nu(3) (opening), nu(5) (shear), and nu(6) (stretch) were observed in the S(0) and S(1) states, giving detailed information on the stretching and deformation force constants of the (amide)N-H.N(pyridine) and the (amino)N-H.O=C hydrogen bonds. Density functional calculations with the B3LYP functional and the 6-311++G(d,p) and 6-311++G(2d,2p) basis sets yield ground-state hydrogen bond frequencies in close agreement with experiment.  相似文献   

2.
2-Phenylethylamine (PEA) is the simplest aromatic amine neurotransmitter, as well as one of the most important. In this work, the conformational equilibrium and hydrogen bonding in liquid PEA were studied by means of Raman spectroscopy and theoretical calculations (DFT/MP2). By changing the orientation of the ethyl and the NH(2) group, nine possible conformers of PEA were found, including four degenerate conformers. Comparison of the experimental Raman spectra of liquid PEA and the calculated Raman spectra of the five typical conformers in selected regions (550-800 and 1250-1500 cm(-1)) revealed that the five conformers can coexist in conformational equilibrium in the liquid. The NH(2) stretching mode of the liquid is red-shifted by ca. 30 cm(-1) relative to that of an isolated PEA molecule (measured previously), implying that intermolecular N-H···N hydrogen bonds play an important role in liquid PEA. The relative intensity of the Raman band at 762 cm(-1) was found to increase with increasing temperature, indicating that the anti conformer might be favorable in liquid PEA at room temperature. The blue shift of the band for the bonded N-H stretch with increasing temperature also provides evidence of the existence of intermolecular N-H···N hydrogen bonds.  相似文献   

3.
Laser-induced fluorescence (LIF), dispersed fluorescence (DF), mass-resolved one-color resonance enhanced two-photon ionization (RE2PI) and UV-UV hole-burning spectra of 2-aminoindan (2-AI) were measured in a supersonic jet. The hole-burning spectra demonstrated that the congested vibronic structures observed in the LIF excitation spectrum were responsible for three conformers of 2-AI. The origins of the conformers were observed at 36931, 36934, and 36955 cm(-1). The DF spectra obtained by exciting the band origins of the three conformers showed quite similar vibrational structures, with the exception of the bands around 600-900 cm(-1). The molecular structures of the three conformers were assigned with the aid of ab initio calculations at the MP2/6-311+G(d,p) level. An amino hydrogen of the most stable conformer points toward the benzene ring. The stability of the most stable conformer was attributed to an intramolecular N-H...pi hydrogen bonding between the hydrogen atom and the pi-electron of the benzene ring. The other two conformers, devoid of intramolecular hydrogen bonding, were also identified for 2-AI. This suggests weak hydrogen bonding in the most stable conformer. The intramolecular N-H...pi hydrogen bonding in 2-AI was discussed in comparison with other weak hydrogen-bonding systems.  相似文献   

4.
The N-H···π hydrogen bond is an important intermolecular interaction in many biological systems. We have investigated the infrared (IR) and ultraviolet (UV) spectra of the supersonic-jet cooled complex of pyrrole with benzene and benzene-d(6) (Pyr·Bz, Pyr·Bz-d(6)). DFT-D density functional, SCS-MP2 and SCS-CC2 calculations predict a T-shaped and (almost) C(s) symmetric structure with an N-H···π hydrogen bond to the benzene ring. The pyrrole is tipped by ω(S(0)) = ±13° relative to the surface normal of Bz. The N···ring distance is 3.13 ?. In the S(1) excited state, SCS-CC2 calculations predict an increased tipping angle ω(S(1)) = ±21°. The IR depletion spectra support the T-shaped geometry: The NH stretch is redshifted by -59 cm(-1), relative to the "free" NH stretch of pyrrole at 3531 cm(-1), indicating a moderately strong N-H···π interaction. The interaction is weaker than in the (Pyr)(2) dimer, where the NH donor shift is -87 cm(-1) [Dauster et al., Phys. Chem. Chem. Phys., 2008, 10, 2827]. The IR C-H stretch frequencies and intensities of the Bz subunit are very similar to those of the acceptor in the (Bz)(2) dimer, confirming that Bz acts as the acceptor. While the S(1)←S(0) electronic origin of Bz is forbidden and is not observable in the gas-phase, the UV spectrum of Pyr·Bz in the same region exhibits a weak 0 band that is red-shifted by 58 cm(-1) relative to that of Bz (38?086 cm(-1)). The origin appears due to symmetry-breaking of the π-electron system of Bz by the asymmetric pyrrole NH···π hydrogen bond. This contrasts with (Bz)(2), which does not exhibit a 0 band. The Bz moiety in Pyr·Bz exhibits a 6a band at 0 + 518 cm(-1) that is about 20× more intense than the origin band. The symmetry breaking by the NH···π hydrogen bond splits the degeneracy of the ν(6)(e(2g)) vibration, giving rise to 6a' and 6b' sub-bands that are spaced by ~6 cm(-1). Both the 0 and 6 bands of Pyr·Bz carry a progression in the low-frequency (10 cm(-1)) excited-state tipping vibration ω', in agreement with the change of the ω tipping angle predicted by SCS-MP2 and SCS-CC2 calculations.  相似文献   

5.
Ab initio calculations, FT-IR and X-ray crystal analysis, indicated that the most stable configuration of 3-oxo-2-(phenylhydrazono)-3-(thien-2-yl)-propionitrile is the anti phenylhydrazone structure 1. Stability of such a conformation, over the possible E-form, 2, that would be stabilized by intramolecular hydrogen bonding, is due to interaction between electron-pair domains of the N, S and O atoms. However, the simulated and experimental IR frequency data indicated intermolecular hydrogen bonding between NH and CN, the latter being lowered to 2214 cm(-1). Studies on 3-oxo-3-phenyl-2-(phenylhydrazono)-propionitrile showed the same result, as well as, another intramolecular hydrogen association of the type N-H...O. This was clearly indicated by the absorbance of the carbonyl stretch at 1605 cm(-1). These data indicated the existence of a bifurcated hydrogen bond in 1a and a single intermolecular association in 1b.  相似文献   

6.
The infrared (IR) spectra of the supersonic-jet cooled 9H- and 7H-tautomers of 2-aminopurine (2AP) and of the 9H-2-aminopurine·H(2)O monohydrate clusters have been measured by mass- and species-selective IR-UV double resonance spectroscopy in the 3200-3900 cm(-1) region, covering the N-H and O-H stretching vibrations. The spectra are complemented by density functional (B3LYP and PW91) and by second-order M?ller-Plesset (MP2) calculations of the electronic energies and vibrational frequenciesof the respective 2AP tautomers and clusters. The 9H- and 7H-2-aminopurine tautomers were definitively identified by the shifts of their NH and NH(2) symmetric and asymmetric stretching frequencies and by comparison to the B3LYP/TZVP calculated IR spectra. The H-bond topologies of the two previously observed 9H-2-aminopurine·H(2)O isomers (Sinha. R. K.; et al. J. Phys. Chem. A2011, 115, 6208) are definitively identified as the "sugar-edge" isomer A and the "trans-amino-bound" isomer B by comparing their IR spectra to the calculated frequencies and IR intensities of the cluster isomers A, B, C, and D, as well as to the IR spectrum of 9H-2AP. The sugar-edge isomer A involves N9-H···OH(2) and HOH···N3 hydrogen bonds and is predicted to be the most stable form. The amino-bound isomer B involves NH(2)···OH(2) and HOH···N1 hydrogen bonds and is calculated to lie 2.5 kJ/mol above isomer A. The H-bond topology of the "cis-amino-bound" isomer C is symmetrically related to isomer B, with a hydrogen bond to the N3 of the pyrimidine group. However, it is calculated to lie 7 kJ/mol above isomer A and indeed is not observed in the supersonic jet. Isomer D involves a single H-bond to the N7 position, is predicted to be 14 kJ/mol above A and is therefore not observed.  相似文献   

7.
Infrared (IR) vibrational spectroscopy of acetic acid (A) neutral and ionic monomers and clusters, employing vacuum ultraviolet (VUV), 10.5 eV single photon ionization of supersonically expanded and cooled acetic acid samples, is presented and discussed. Molecular and cluster species are identified by time of flight mass spectroscopy: the major mass features observed are A(n)H(+) (n=1-9), ACOOH(+) (VUV ionization) without IR radiation present, and A(+) with both IR and VUV radiation present. The intense feature ACOOH(+) arises from the cleavage of (A)(2) at the beta-CC bond to generate ACOOH(+)+CH(3) following ionization. The vibrational spectrum of monomeric acetic acid (2500-7500 cm(-1)) is measured by nonresonant ionization detected infrared (NRID-IR) spectroscopy. The fundamentals and overtones of the CH and OH stretches and some combination bands are identified in the spectrum. Mass selected IR spectra of neutral and cationic acetic acid clusters are measured in the 2500-3800 cm(-1) range employing nonresonant ionization dip-IR and IR photodissociation (IRPD) spectroscopies, respectively. Characteristic bands observed at approximately 2500-2900 cm(-1) for the cyclic ring dimer are identified and tentatively assigned. For large neutral acetic acid clusters A(n)(n>2), spectra display only hydrogen bonded OH stretch features, while the CH modes (2500-2900 cm(-1)) do not change with cluster size n. The IRPD spectra of protonated (cationic) acetic acid clusters A(n)H(+) (n=1-7) exhibit a blueshift of the free OH stretch with increasing n. These bands finally disappear for n> or =6, and one broad and weak band due to hydrogen bonded OH stretch vibrations at approximately 3350 cm(-1) is detected. These results indicate that at least one OH group is not involved in the hydrogen bonding network for the smaller (n< or =5) A(n)H(+) species. The disappearance of the free OH stretch feature at n> or =6 suggests that closed cyclic structures form for A(n)H(+) for the larger clusters (n> or =6).  相似文献   

8.
The hydrogen-bonded complexes of the nucleobase mimic 2-pyridone (2PY) with seven different fluorinated benzenes (1-, 1,2-, 1,4-, 1,2,3-, 1,3,5-, 1,2,3,4-, and 1,2,4,5-fluorobenzene) are important model systems for investigating the relative importance of hydrogen bonding versus pi-stacking interactions in DNA. We have shown by supersonic-jet spectroscopy that these dimers are hydrogen bonded and not pi-stacked at low temperature (Leist, R.; Frey, J. A.; Leutwyler, S. J. Phys. Chem. A 2006, 110, 4180). Their geometries and binding energies D(e) were calculated using the resolution of identity (RI) M?ller-Plesset second-order perturbation theory method (RIMP2). The most stable dimers are bound by antiparallel N-H...F-C and C-H...O=C hydrogen bonds. The binding energies are extrapolated to the complete basis set (CBS) limit, , using the aug-cc-pVXZ basis set series. The CBS binding energies range from -D(e,CBS) = 6.4-6.9 kcal/mol and the respective dissociation energies from -D(0,CBS) = 5.9-6.3 kcal/mol. In combination with experiment, the latter represent upper limits to the dissociation energies of the pi-stacked isomers (which are not observed experimentally). The individual C-H...O=C and N-H...F-C contributions to D(e) can be approximately separated. They are nearly equal for 2PY.fluorobenzene; each additional F atom strengthens the C-H...O=C hydrogen bond by approximately 0.5 kcal/mol and weakens the C-F...H-N hydrogen bond by approximately 0.3 kcal/mol. The single H-bond strengths and lengths correlate with the gas-phase acid-base properties of the C-H and C-F groups of the fluorobenzenes.  相似文献   

9.
We present new observations of the infrared (IR) spectrum of neutral methanol and neutral and protonated methanol clusters employing IR plus vacuum ultraviolet (vuv) spectroscopic techniques. The tunable IR light covers the energy ranges of 2500-4500 cm(-1) and 5000-7500 cm(-1). The CH and OH fundamental stretch modes, the OH overtone mode, and combination bands are identified in the vibrational spectrum of supersonic expansion cooled methanol (2500-7500 cm(-1)). Cluster size selected IR plus vuv nonresonant infrared ion-dip infrared spectra of neutral methanol clusters, (CH(3)OH)(n) (n=2,[ellipsis (horizontal)],8), demonstrate that the methanol dimer has free and bonded OH stretch features, while clusters larger than the dimer display only hydrogen bonded OH stretch features. CH stretch mode spectra do not change with cluster size. These results suggest that all clusters larger than the dimer have a cyclic structure with OH groups involved in hydrogen bonding. CH groups are apparently not part of this cyclic binding network. Studies of protonated methanol cluster ions (CH(3)OH)(n)H(+) n=1,[ellipsis (horizontal)],7 are performed by size selected vuv plus IR photodissociation spectroscopy in the OH and CH stretch regions. Energies of the free and hydrogen bonded OH stretches exhibit blueshifts with increasing n, and these two modes converge to approximately 3670 and 3400 cm(-1) at cluster size n=7, respectively.  相似文献   

10.
Polarized IR spectra of H12(3)45 2-methylimidazole and of its H1D2(3)45, D1H2(3)45 and D12(3)45 deuterium derivative crystals are reported and interpreted within the limits of the "strong-coupling" theory. The spectra interpretation facilitated the recognition of the H/D isotopic "self-organization" phenomenon, which depends on a non-random distribution of protons and deuterons in the lattices of isotopically diluted crystal samples. The H/D isotopic "self-organization" mechanism engaged all four hydrogen bonds from each unit cell. These effects basically resulted from the dynamical co-operative interactions involving adjacent hydrogen bonds in each hydrogen bond chain. A weaker exciton coupling involved the closely spaced hydrogen bonds; each belonging to a different chain of associated 2-methylimidazole molecules. The high intensity of the narrow band at ca. 1880cm(-1) was interpreted as the result of coupling between the γ(N-H?N) proton bending "out of plane" vibration overtone and the ν(N-H) proton stretching vibration.  相似文献   

11.
Matrix isolation infrared (IR) studies have been carried out on the vaporisation of the alkali-metal azides MN3 (M = Na, K, Rb and Cs). The results show that under high vacuum conditions, molecular KN3, RbN3 and CsN3 are present as stable high-temperature vapour species, together with variable amounts of nitrogen gas and the corresponding metal atoms. The characterisation of these molecular azides is supported by ab initio molecular orbital calculations and density functional theory (DFT) calculations, and for CsN3 in particular, by the detection of the isotopomers Cs(14N15N14N) and Cs(15N14N14N). The IR spectra are assigned to a "side-on" (C(2v)) structure by comparison with the spectral features predicted both by vibrational analysis and calculation. The most intense IR features for KN3, RbN3 and CsN3 isolated in nitrogen matrices lie at 2005, 2004.4 and 2002.2 cm(-1), respectively, and correspond to the N3 asymmetric stretch. The N3 bending mode in CsN3 is identified at 629 cm(-1). An additional feature routinely observed in these experiments occurred at approximately 2323 cm(-1) and is assigned to molecular N2, perturbed by the close proximity of an alkali-metal atom. The position of this band appeared to show very little cation dependence, but its intensity correlated with the extent of sample thermal decomposition.  相似文献   

12.
We present resonant two-photon ionization (R2PI), IR-UV, and UV-UV double resonance spectra of jet-cooled 2-aminopurine (2AP) as well as Fourier transform infrared (FTIR) gas phase spectra. 2AP is a fluorescing isomer of the nucleobase adenine. The results show that there is only one tautomer of 2AP which absorbs in the wavelength range 32,300-34,500 cm(-1). The comparison with the calculated IR spectra of 9H- and 7H-2AP points to 9H-2AP as the dominating tautomer in the gas phase but the spectra are too similar to allow an unambiguous assignment to the respective tautomer. Hence, we determined vertical and adiabatic excitation energies of both tautomers employing combined density functional theory and multi-reference configuration interaction techniques. For the 0-0 band of the first 1pipi* transition of 9H-2AP we obtain a theoretical value of 32,328 cm(-1), in excellent agreement with the band origin of our R2PI spectrum at 32,371 cm(-1). The first singlet pipi* transition of the less stable 7H-2AP tautomer is predicted to be red-shifted by about 1700 cm(-1) with respect to the corresponding transition in 9H-2AP. From the absence of experimental bands in the energy region between 30,300 and 32,350 cm(-1) we conclude that 7H-2AP is not present to an appreciable extent in the molecular beam. Our calculations yield nearly equal energies for the 1npi* and 1pipi* minima of isolated 2AP, similar to the situation in adenine. The hitherto existing argument that the energetic order of states is responsible for the different spectroscopic properties of these isomers therefore does not hold. Rather, vibronic levels close to the origin of the 1pipi* transition cannot access the conical intersection between the 1pipi* and S(0) states along a puckering coordinate of the six-membered ring, in contrast to the situation in electronically excited 9H-adenine. As a consequence, a rich vibrational structure can be observed in the R2PI spectrum of 2AP whereas the spectrum of 9H-adenine breaks off at low energies.  相似文献   

13.
The changes in the spectra of the acidic group in chabazite are studied by quantum chemical calculations. The zeolite is modeled by two clusters consisting of eight tetrahedral atoms arranged in a ring and seven tetrahedral atoms coordinated around the zeolite OH group. The potential energy and dipole surfaces were constructed from the zeolite OH stretch, in-plane and out-of-plane bending coordinates, and the intermolecular stretch coordinate that corresponds to a movement of the water molecule as a whole. Both the anharmonicities of the potential energy and dipole were taken into account by calculation of the frequencies and intensities. The matrix elements of the vibrational Hamiltonian were calculated within the discrete variable representation basis set. We have assigned the experimentally observed frequencies at approximately 2900, approximately 2400, and approximately 1700 cm(-1) to the strongly perturbed zeolite OH vibrations caused by the hydrogen bonding with the water molecule. The ABC triplet is a Fermi resonance of the zeolite OH stretch mode with the overtone of the in-plane bending (the A band) and the overtone of the out-of-plane bending (the C band). In the B band the stretch is also coupled with the second overtone of the out-of-plane bending. The frequencies at approximately 3700 and approximately 3550 cm(-1) we have assigned to the OH stretch frequencies of a slightly perturbed water molecule.  相似文献   

14.
IR and Raman spectra of melamine diborate have been recorded and analysed. Band assignments are given based on the vibrations of melamine and boric acid molecules. Three sets of frequencies observed for the N-H stretching mode region is ascribed to different types of hydrogen bonds in the amino groups of the triazine ring. Due to the lower symmetry of the melamine and boric acid molecules in the crystal, activation of inactive modes and lifting of the degeneracy of certain vibrational modes are observed. Lower symmetry of the melamine molecule in the crystal has resulted in the decrease of intensity of the Raman active melamine band around 1490 cm(-1). All the internal modes of boric acid molecule were identified. All the ring breathing modes of melamine molecule show frequency shift towards the high wavenumber side. In other words, hydrogen bonding affects the ring breathing modes of melamine.  相似文献   

15.
The nucleobases uracil (U) and thymine (T) offer three hydrogen-bonding sites for double H-bond formation via neighboring N-H and C=O groups, giving rise to the Watson-Crick, wobble and sugar-edge hydrogen bond isomers. We probe the hydrogen bond properties of all three sites by forming hydrogen bonded dimers of U, 1-methyluracil (1MU), 3-methyluracil (3MU), and T with 2-pyridone (2PY). The mass- and isomer-specific S1 <-- S0 vibronic spectra of 2PY.U, 2PY.3MU, 2PY.1MU, and 2PY.T were measured using UV laser resonant two-photon ionization (R2PI). The spectra of the Watson-Crick and wobble isomers of 2PY.1MU were separated using UV-UV spectral hole-burning. We identify the different isomers by combining three different diagnostic tools: (1) Selective methylation of the uracil N3-H group, which allows formation of the sugar-edge isomer only, and methylation of the N1-H group, which leads to formation of the Watson-Crick and wobble isomers. (2) The experimental S1 <-- S0 origins exhibit large spectral blue shifts relative to the 2PY monomer. Ab initio CIS calculations of the spectral shifts of the different hydrogen-bonded dimers show a linear correlation with experiment. This correlation allows us to identify the R2PI spectra of the weakly populated Watson-Crick and wobble isomers of both 2PY.U and 2PY.T. (3) PW91 density functional calculation of the ground-state binding and dissociation energies De and D0 are in agreement with the assignment of the dominant hydrogen bond isomers of 2PY.U, 2PY.3MU and 2PY.T as the sugar-edge form. For 2PY.U, 2PY.T and 2PY.1MU the measured wobble:Watson-Crick:sugar-edge isomer ratios are in good agreement with the calculated ratios, based on the ab initio dissociation energies and gas-phase statistical mechanics. The Watson-Crick and wobble isomers are thereby determined to be several kcal/mol less strongly bound than the sugar-edge isomers. The 36 observed intermolecular frequencies of the nine different H-bonded isomers give detailed insight into the intermolecular force field.  相似文献   

16.
The two water gas OH stretch vibrations that absorb in the infrared (IR) near 3700 cm(-1) are redshifted to near 3300 cm(-1) upon liquefaction. The bathochromic shift is due to the formation of four H-bonds: two are from the labile hydrogen atoms to neighbors and two are received from neighbors by the oxygen free electron pairs. Therefore, the water oxygen atom is surrounded by four hydrogen atoms, two of these make covalent bonds that make H-bonds and two are oxygen H-bonded. However, these permute at rate in the ps range. When the water molecules are isolated in acetonitrile (MeCN) or acetone (Me(2)CO), only the labile hydrogen atoms make H-bonds with the solvent. The bathochromic shift of the OH stretch bands is then almost 130 cm(-1) with, however, the asymmetric (ν(3)) and symmetric (ν(1)) stretch bands maintained. When more water is added to the solutions, the oxygen lone doublets make H-bonds with the available labile hydrogen atoms from neighboring water molecules. With one bond accepted, the bathochromic shift is further displaced by almost 170 cm(-1). When the second oxygen doublet is filled, another bathochromic shift by almost 100 cm(-1) is observed. The total bathochromic shift is near 400 cm(-1) with a full width at half height of near 400 cm(1). This is the case of pure liquid water. Notwithstanding the shift and the band broadness, the ν(3) and ν(1) band individualities are maintained with, however, added satellite companions that come from the far IR (FIR) absorption. These added to the fundamental bands are responsible for the band broadness and almost featureless shape of the massive OH stretch absorption of liquid water. Comparison of light and heavy water mixture spectra indicates that the OH and OD stretch regions show five different configurations: OH(4); OH(3)D; OH(2)D(2); OHD(3); and OD(4) [J. Chem. Phys. 116, 4626 (2002)]. The comparison of the OH bands of OH(4) with that of OHD(3) indicates that the main component in OHD(3) is ν(OH), whereas in OH(4) two main components are present: ν(3) and ν(1). Similar results are obtained for the OD bands of OD(4) and ODH(3). These results indicate that the C(2) (v) symmetry of H(2)O and D(2)O is preserved in the liquid and aqueous solutions whereas C(s) is that of HDO.  相似文献   

17.
By means of heterodyned two-dimensional IR photon echo experiments on liquid formamide and isotopomers the vibrational frequency dynamics of the N-H stretch mode, the C-D mode, and the C=O mode were obtained. In each case the vibrational frequency correlation function is fitted to three exponentials representing ultrafast (few femtoseconds), intermediate (hundreds of femtoseconds), and slow (many picoseconds) correlation times. In the case of N-H there is a significant underdamped contribution to the correlation decay that was not seen in previous experiments and is attributed to hydrogen-bond librational modes. This underdamped motion is not seen in the C-D or C=O correlation functions. The motions probed by the C-D bond are generally faster than those seen by N-H and C=O, indicating that the environment of C-D interchanges more rapidly, consistent with a weaker C-D...O=C bond. The correlation decays of N-H and C=O are similar, consistent with both being involved in strong H bonding.  相似文献   

18.
Fluorobenzenes are pi-acceptor synthons that form pi-stacked structures in molecular crystals as well as in artificial DNAs. We investigate the competition between hydrogen bonding and pi-stacking in dimers consisting of the nucleobase mimic 2-pyridone (2PY) and all fluorobenzenes from 1-fluorobenzene to hexafluorobenzene (n-FB, with n = 1-6). We contrast the results of high level ab initio calculations with those obtained using ultraviolet (UV) and infrared (IR) laser spectroscopy of isolated and supersonically cooled dimers. The 2PY.n-FB complexes with n = 1-5 prefer double hydrogen bonding over pi-stacking, as diagnosed from the UV absorption and IR laser depletion spectra, which both show features characteristic of doubly H-bonded complexes. The 2-pyridone.hexafluorobenzene dimer is the only pi-stacked dimer, exhibiting a homogeneously broadened UV spectrum and no IR bands characteristic for H-bonded species. MP2 (second-order M?ller-Plesset perturbation theory) calculations overestimate the pi-stacked dimer binding energies by about 10 kJ/mol and disagree with the experimental observations. In contrast, the MP2 treatment of the H-bonded dimers appears to be quite accurate. Grimme's spin-component-scaled MP2 approach (SCS-MP2) is an improvement over MP2 for the pi-stacked dimers, reducing the binding energy by approximately 10 kJ/mol. When applied to explicitly correlated MP2 theory (SCS-MP2-R12 approach), agreement with the corresponding coupled-cluster binding energies [at the CCSD(T) level] is very good for the pi-stacked dimers, within +/- 1 kJ/mol for the 2PY complexes with 1-fluorobenzene, 1,2-difluorobenzene, 1,2,4,5-tetrafluorobenzene, pentafluorobenzene and hexafluorobenzene. Unfortunately, the SCS-MP2 approach also reduces the binding energy of the H-bonded species, leading to disagreement with both coupled-cluster theory and experiment. The SCS-MP2-R12 binding energies follow the SCS-MP2 binding energies closely, being about 0.5 and 0.7 kJ/mol larger for the H-bonded and pi-stacked forms, respectively, in an augmented correlation-consistent polarized valence quadruple-zeta basis. It seems that the SCS-MP2 and SCS-MP2-R12 methods cannot provide sufficient accuracy to replace the CCSD(T) method for intermolecular interactions where H-bonding and pi-stacking are competitive.  相似文献   

19.
In the present work, we have investigated the structure of 7-azaindole···2-fluoropyridine dimer in a supersonic jet by employing resonant two photon ionization (R2PI), IR-UV, and UV-UV double resonance spectroscopic techniques combined with quantum chemistry calculations. The R2PI spectrum of the dimer is recorded by electronic excitation of the 7-azaindole moiety, and a few low frequency intermolecular vibrations of the dimer are clearly observed in the spectrum. The electronic origin band of the dimer is red-shifted by 1278 cm(-1) from the S(1) ← S(0) origin band of 7-azaindole monomer. The presence of a single conformer of the dimer is confirmed by IR-UV and UV-UV hole-burning spectroscopic techniques. RIDIR (Resonant ion dip infrared) spectrum of the dimer shows a red-shift of 265 cm(-1) in the N-H stretching frequency with respect to that of the 7-azaindole monomer. Two planar double hydrogen bonded cyclic structures of the dimer have been predicted from DFT calculations. Comparison of experimental and theoretical N-H stretching frequencies confirms that the observed dimer is stabilized by N-H···N and C-H···N hydrogen bonding interactions. The less stable conformer with N-H···F and C-H···N interactions are not observed in the experiment. The competition between N-H···N and N-H···F interactions in the two dimeric structures are discussed from natural bond orbital (NBO) analysis. The current results demonstrate that fluorine makes a hydrogen bond of intermediate strength through cooperative interaction of another hydrogen bond (C-H···N) present in the dimer, although fluorine is believed to be very weak hydrogen bond acceptor.  相似文献   

20.
Combined use of IR, Raman, neutron scattering and fluorescence measurements for porphycene isolated in helium nanodroplets, supersonic jet and cryogenic matrices, as well as for solid and liquid solutions, resulted in the assignments of almost all of 108 fundamental vibrations. The puzzling feature of porphycene is the apparent lack of the N-H stretching band in the IR spectrum, predicted to be the strongest of all bands by standard harmonic calculations. Theoretical modeling of the IR spectra, based on ab initio molecular dynamics simulations, reveals that the N-H stretching mode should appear as an extremely broad band in the 2250-3000 cm(-1) region. Coupling of the N-H stretching vibration to other modes is discussed in the context of multidimensional character of intramolecular double hydrogen transfer in porphycene. The analysis can be generalized to other strongly hydrogen-bonded systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号