首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study a gauge-invariant order parameter for deconfinement and the chiral condensate in SU(2) and SU(3) Yang–Mills theory in the vicinity of the deconfinement phase transition using the Landau gauge quark and gluon propagators. We determine the gluon propagator from lattice calculations and the quark propagator from its Dyson–Schwinger equation, using the gluon propagator as input. The critical temperature and a deconfinement order parameter are extracted from the gluon propagator and from the dependency of the quark propagator on the temporal boundary conditions. The chiral transition is determined using the quark condensate as order parameter. We investigate whether and how a difference in the chiral and deconfinement transition between SU(2) and SU(3) is manifest.  相似文献   

2.
《Nuclear Physics B》2006,748(3):524-539
We suggest that the gauge-invariant hedgehog-like structures in the Wilson loops are physically interesting degrees of freedom in the Yang–Mills theory. The trajectories of these “hedgehog loops” are closed curves corresponding to center-valued (untraced) Wilson loops and are characterized by the center charge and winding number. We show numerically in the SU(2) Yang–Mills theory that the density of hedgehog structures in the thermal Wilson–Polyakov line is very sensitive to the finite-temperature phase transition. The (additively normalized) hedgehog line density behaves like an order parameter: The density is almost independent of the temperature in the confinement phase and changes substantially as the system enters the deconfinement phase. In particular, our results suggest that the (static) hedgehog lines may be relevant degrees of freedom around the deconfinement transition and thus affect evolution of the quark–gluon plasma in high-energy heavy-ion collisions.  相似文献   

3.
The effective potential of the order parameter for confinement is calculated within the Hamiltonian approach by compactifying one spatial dimension and using a background gauge fixing. Neglecting the ghost and using the perturbative gluon energy one recovers the Weiss potential. From the full non-perturbative potential calculated within a variational approach a critical temperature of the deconfinement phase transition of 269 MeV is found for the gauge group SU(2).  相似文献   

4.
Compact quantum electrodynamics in 2 + 1 dimensions often arises as an effective theory for a Mott insulator, with the Dirac fermions representing the low-energy spinons. An important and controversial issue in this context is whether a deconfinement transition takes place. We perform a renormalization group analysis to show that deconfinement occurs when N > Nc = 36/pi3 approximately to 1.161, where N is the number of fermion replica. For N < Nc, however, there are two stable fixed points separated by a line containing a unstable nontrivial fixed point: a fixed point corresponding to the scaling limit of the noncompact theory, and another one governing the scaling behavior of the compact theory. The string tension associated with the confining interspinon potential is shown to exhibit a universal jump as N --> Nc-. Our results imply the stability of a spin liquid at the physical value N = 2 for Mott insulators.  相似文献   

5.
We investigate the phase diagram of bosons interacting via Feshbach-resonant pairing interactions in a one-dimensional lattice. Using large scale density matrix renormalization group and field theory techniques we explore the atomic and molecular correlations in this low-dimensional setting. We provide compelling evidence for an Ising deconfinement transition occurring between distinct superfluids and extract the Ising order parameter and correlation length of this unusual superfluid transition. This is supported by results for the entanglement entropy which reveal both the location of the transition and critical Ising degrees of freedom on the phase boundary.  相似文献   

6.
By introducing the dressed Polayakov loop or dual chiral condensate as a candidate order parameter to describe the deconfinement phase transition for light flavors, we discuss the interplay between the chiral and deconfinement phase transitions, and propose the possible QCD phase diagram at finite temperature and density. We also introduce a dynamical gluodynamic model with dimension-2 gluon condensate, which can describe the color electric deconfinement as well as the color magnetic confinement.  相似文献   

7.
We study the deconfinement and chiral restoration transitions in the context of non-local PNJL models, considering the impact of the presence of dynamical quarks on the scale parameter appearing in the Polyakov potential. We show that the corresponding critical temperatures are naturally entangled for both zero and imaginary chemical potential, in good agreement with lattice QCD results. We also analyze the Roberge-Weiss transition, which is found to be first order at the associated endpoint.  相似文献   

8.
The effective potential in finite temperature and density nontopological soliton bag model is investigated.Based on this,we calculate the bag constant which depends on temperature and chemical potential.We also analyse the property of deconfinement phase transition.  相似文献   

9.
We consider two-flavor asymmetric QCD combined with a low-energy effective model inspired by chiral perturbation theory and lattice data to investigate the effects of masses, isospin and baryon number on the pressure and the deconfinement phase transition. Remarkable agreement with lattice results is found for the critical temperature behavior. Further analyses of the cold, dense case and the influence of quark mass asymmetry are also presented.  相似文献   

10.
We construct an effective Lagrangian which illustrates why color deconfines when chiral symmetry is restored in hot gauge theories with quarks in the fundamental representation. For quarks in the adjoint representation we show that, while deconfinement and the chiral transition do not need to coincide, entanglement between them is still present. Extension to the chemical potential driven transition is discussed.  相似文献   

11.
We consider the phase transition in the dual Yang-Mills theory at finite temperature T. The phase transition is associated with a change (breaking) of symmetry. The effective mass of the dual gauge field is derived as a function of the T-dependent gauge coupling constant. We investigate the analytical criterion constraining the existence of a quark-antiquark bound state at temperatures higher than the temperature of deconfinement. The text was submitted by the author in English.  相似文献   

12.
We present unambiguous evidence, from lattice simulations of QCD with three degenerate quark species, for two tricritical points in the (T, m) phase diagram at fixed imaginary chemical potential μ/T = iπ/3 mod2π/3, one in the light and one in the heavy mass regime. These represent the boundaries of the chiral and deconfinement critical lines continued to imaginary μ, respectively. It is demonstrated that the shape of the deconfinement critical line for real chemical potentials is dictated by tricritical scaling and implies the weakening of the deconfinement transition with real chemical potential. The generalization to nondegenerate and light quark masses is discussed.  相似文献   

13.
The confinement/deconfinement phase transition in SU(3) lattice gauge theories at high temperatures is analogous to that of the Z(3) gauge theories. We study various Z(3) gauge-matter theories that result from replacing the gauge group SU(3) with its center Z(3). We include large-mass fermions in the Wilson formulation and allow a chemical potential. We show that in the limit of strong coupling and high temperature the (3 + 1)-dimensional theory becomes a three state, three-dimensional Potts model with uniform external fields of real and imaginary strengths related to the fermion mass and chemical potential. By studying the phase structure of the q = 3, d = 3 Potts model with external fields we argue that the confinement/deconfinement phase transition is first order, but highly sensitive to external fields, and that it does not occur at “strong coupling” in a Z(3) gauge theory if there is a light enough fermion present. We discuss the consequences of this result for QCD.  相似文献   

14.
We represent Polyakov loops and their correlators as spectral sums of eigenvalues and eigenmodes of the lattice Dirac operator. The deconfinement transition of pure gauge theory is characterized as a change in the response of moments of eigenvalues to varying the boundary conditions of the Dirac operator. We argue that the potential between static quarks is linked to spatial correlations of Dirac eigenvectors.  相似文献   

15.
Based on the topological structure of gauge theory, an effective dual version of QCD has been reviewed and analyzed for the phase structure and color confining properties of QCD by invoking the dynamical magnetic symmetry breaking. The multi-flux-tube configuration of condensed QCD vacuum has been explored and associated glueball masses and inter-quark potential have been derived. Thermal response of QCD vacuum has been analyzed using path-integral formalism alongwith the mean-field approach and associated thermodynamical potential is used to derive thermal form of glueball masses, monopole condensate, inter-quark potential and monopole density which then lead to an estimate of the critical temperature of QCD phase transition. During its thermal evolution, a smooth transition of hadronic system via a weakly bound QGP phase to the fully deconfined phase is established and the thermal evolution profiles of various parameters are shown to indicate a second-order deconfinement phase transition and the restoration of magnetic symmetry. Monopole density calculations have been shown to lead to gradual evaporation of magnetic condensate into thermal monopoles during QCD phase transition.  相似文献   

16.
17.
The deconfinement phase transition with external magnetic field is investigated in the Friedberg-Lee model.We expand the potential around the two local minima of the first-order deconfinement phase transition and extract the ground state of the system in the frame of functional renormalization group.By solving the Sow equations we find that the magnetic field displays a catalysis effect and it becomes more difficult to break througii the confinement.  相似文献   

18.
We present results for the chiral and deconfinement transition of two flavor QCD at finite temperature and chemical potential. To this end we study the quark condensate and its dual, the dressed Polyakov loop, with functional methods using a set of Dyson-Schwinger equations. The quark propagator is determined self-consistently within a truncation scheme including temperature and in-medium effects of the gluon propagator. For the chiral transition we find a crossover turning into a first order transition at a critical endpoint at large quark chemical potential, μEP/TEP≈3. For the deconfinement transition we find a pseudo-critical temperature above the chiral transition in the crossover region but coinciding transition temperatures close to the critical endpoint.  相似文献   

19.
We perform a thorough study of 3+1-dimensional SO(3) LGT for fixed-twist background. We concentrate in particular on the physically significant trivial and 1-twist sectors. Introducing a ℤ2 monopole chemical potential the 1st order bulk transition is moved down in the strong coupling region and weakened to 2nd order in the 4-dimensional Ising model universality class. In this extended phase diagram we gain access to a confined phase in every fixed-twist sector of the theory. The Pisa disorder operator is employed together with the Polyakov loop to study the confinement–deconfinement transition in each sector. Due to the specific properties of both operators, most results can be used to gain insight in the ergodic theory, where all twist sectors should be summed upon. An explicit mapping of each fixed-twist theory to effective positive plaquette models with fixed-twisted boundary conditions is applied to better establish their properties in the different phases.  相似文献   

20.
It is expected that incorporating the center symmetry in the conventional dimensionally reduced effective theory for high-temperature SU(Nc) Yang-Mills theory, EQCD, will considerably extend its applicability towards the deconfinement transition. The construction of such a center-symmetric effective theory for the case of two colors is reviewed and lattice simulation results are presented. The simulations demonstrate that unlike EQCD, the new center-symmetric theory undergoes a second order confining phase transition in complete analogy with the full theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号