首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Precursor silica nanoparticles can evolve to silicalite-1 crystals under hydrothermal conditions in the presence of tetrapropylammonium (TPA) cations. It has been proposed that in relatively dilute sols of silica, TPA, water, and ethanol, silicalite-1 growth is preceded by precursor nanoparticle evolution and then occurs by oriented aggregation. Here, we present a study of silicalite-1 crystallization in more concentrated mixtures and propose that growth follows a path similar to that taken in the dilute system. Small-angle X-ray scattering (SAXS), cryogenic transmission electron microscopy (cryo-TEM), and high-resolution transmission electron microscopy (HRTEM) were used to measure nanoparticle size and to monitor zeolite nucleation and early-stage crystal development. The precursor silica nanoparticles, present in the clear sols prior to crystal formation, were characterized using two SAXS instruments, and the influence of interparticle interactions is discussed. In addition, SAXS was used to detect the onset of secondary particle formation, and HRTEM was used to characterize their structure and morphology. Cryo-TEM allowed for in situ visual observation of the nanoparticle population. Combined results are consistent with growth by aggregation of silica nanoparticles and of the larger secondary crystallites. Finally, a unique intergrowth structure that was formed during the more advanced growth stages is reported, lending additional support for the proposal of aggregative growth.  相似文献   

2.
The temporal evolution of Pt nanoparticle formation in ethylene glycol solution from H(2)PtCl(6)·6H(2)O at 90 °C for different molar ratios of NaOH to Pt (84, 6.5, and 2) in the presence or absence of poly(N-vinyl-2-pyrrolidone) (PVP) as protecting agent was followed in situ by small-angle X-ray scattering (SAXS). The SAXS profiles were analyzed regarding particle size and size distribution using the Guinier approximation and the indirect Fourier transform technique (IFT). The NaOH to Pt ratio has an influence on the integral nanoparticle formation rate as well as on the metal reduction rate and the ratio of nucleation to growth reactions. The fastest nanoparticle formation rate was observed for the NaOH/Pt ratio of 6.5. The obtained results indicate that the differences in the particle formation rate might be due to differences in the reduction rate of the formed Pt complexes. In alkaline reaction media (NaOH/Pt = 84 or 6.5), small nanoparticles with a relatively narrow size distribution were formed. Therefore, it is assumed that for these NaOH/Pt ratios the particle formation is dominated by nucleation reactions. Additionally, the in situ studies point out that nanoparticles prepared at the NaOH/Pt ratio of 84 do not grow further after attaining a certain particle size. For a NaOH to Pt ratio of 2, that means in acidic medium, particle formation should be dominated by growing processes and, therefore, larger particles are formed accompanied by a broader particle size distribution. The influence of PVP on the nanoparticle formation rate is relatively low. However, in acidic medium, the presence of PVP is necessary in order to protect the formed nanoparticles from irreversible aggregation reactions.  相似文献   

3.
Understanding nanoparticle‐formation reactions requires multi‐technique in situ characterisation, since no single characterisation technique provides adequate information. Here, the first combined small‐angle X‐ray scattering (SAXS)/wide‐angle X‐ray scattering (WAXS)/total‐scattering study of nanoparticle formation is presented. We report on the formation and growth of yttria‐stabilised zirconia (YSZ) under the extreme conditions of supercritical methanol for particles with Y2O3 equivalent molar fractions of 0, 4, 8, 12 and 25 %. Simultaneous in situ SAXS and WAXS reveals a quick formation (seconds) of sub‐nanometre amorphous material forming larger agglomerates with subsequent slow crystallisation (minutes) into nanocrystallites. The amount of yttria dopant is shown to strongly affect the crystallite size and unit‐cell dimensions. At yttria‐doping levels larger than 8 %, which is known to be the stoichiometry with maximum ionic conductivity, the strain on the crystal lattice is significantly increased. Time‐resolved nanoparticle size distributions are calculated based on whole‐powder‐pattern modelling of the WAXS data, which reveals that concurrent with increasing average particle sizes, a broadening of the particle‐size distributions occur. In situ total scattering provides structural insight into the sub‐nanometre amorphous phase prior to crystallite growth, and the data reveal an atomic rearrangement from six‐coordinated zirconium atoms in the initial amorphous clusters to eight‐coordinated zirconia atoms in stable crystallites. Representative samples prepared ex situ and investigated by transmission electron microscopy confirm a transformation from an amorphous material to crystalline nanoparticles upon increased synthesis duration.  相似文献   

4.
Small angle X-ray scattering (SAXS) is a powerful characterization technique for the analysis of polymer-silica nanocomposite particles due to their relatively narrow particle size distributions and high electron density contrast between the polymer core and the silica shell. Time-resolved SAXS is used to follow the kinetics of both nanocomposite particle formation (via silica nanoparticle adsorption onto sterically stabilized poly(2-vinylpyridine) (P2VP) latex in dilute aqueous solution) and also the spontaneous redistribution of silica that occurs when such P2VP-silica nanocomposite particles are challenged by the addition of sterically stabilized P2VP latex. Silica adsorption is complete within a few seconds at 20 °C and the rate of adsorption strongly dependent on the extent of silica surface coverage. Similar very short time scales for silica redistribution are consistent with facile silica exchange occurring as a result of rapid interparticle collisions due to Brownian motion; this interpretation is consistent with a zeroth-order Smoluchowski-type calculation.  相似文献   

5.
We demonstrate hierarchical assembly of tobacco mosaic virus (TMV)-based nanotemplates with hydrogel-based encoded microparticles via nucleic acid hybridization. TMV nanotemplates possess a highly defined structure and a genetically engineered high density thiol functionality. The encoded microparticles are produced in a high throughput microfluidic device via stop-flow lithography (SFL) and consist of spatially discrete regions containing encoded identity information, an internal control, and capture DNAs. For the hybridization-based assembly, partially disassembled TMVs were programmed with linker DNAs that contain sequences complementary to both the virus 5' end and a selected capture DNA. Fluorescence microscopy, atomic force microscopy (AFM), and confocal microscopy results clearly indicate facile assembly of TMV nanotemplates onto microparticles with high spatial and sequence selectivity. We anticipate that our hybridization-based assembly strategy could be employed to create multifunctional viral-synthetic hybrid materials in a rapid and high-throughput manner. Additionally, we believe that these viral-synthetic hybrid microparticles may find broad applications in high capacity, multiplexed target sensing.  相似文献   

6.
The formation and growth mechanisms in the hydrothermal synthesis of SnO(2) nanoparticles from aqueous solutions of SnCl(4)·5H(2)O have been elucidated by means of in situ X-ray total scattering (PDF) measurements. The analysis of the data reveals that when the tin(IV) chloride precursor is dissolved, chloride ions and water coordinate octahedrally to tin(IV), forming aquachlorotin(IV) complexes of the form [SnCl(x)(H(2)O)(6-x)]((4-x)+) as well as hexaaquatin(IV) complexes [Sn(H(2)O)(6-y)(OH)(y)]((4-y)+). Upon heating, ellipsoidal SnO(2) nanoparticles are formed uniquely from hexaaquatin(IV). The nanoparticle size and morphology (aspect ratio) are dependent on both the reaction temperature and the precursor concentration, and particles as small as ~2 nm can be synthesized. Analysis of the growth curves shows that Ostwald ripening only takes place above 200 °C, and in general the growth is limited by diffusion of precursor species to the growing particle. The c-parameter in the tetragonal lattice is observed to expand up to 0.5% for particle sizes down to 2-3 nm as compared to the bulk value. SnO(2) nanoparticles below 3-4 nm do not form in the bulk rutile structure, but as an orthorhombic structural modification, which previously has only been reported at pressures above 5 GPa. Thus, adjustment of the synthesis temperature and precursor concentration not only allows control over nanoparticle size and morphology but also the structure.  相似文献   

7.
Combining scanning tunneling microscopy (STM), IR reflection absorption spectroscopy (IRAS) and molecular beam (MB) techniques, we have investigated particle size effects on a Pd/Fe(3)O(4) model catalyst. We focus on the particle size dependence of (i) CO adsorption, (ii) oxygen adsorption and (iii) Pd nanoparticle oxidation/reduction. The model system, which is based on Pd nanoparticles supported on an ordered Fe(3)O(4) film on Pt(111), is characterized in detail with respect to particle morphology, nucleation, growth and coalescence behavior of the Pd particles. Morphological changes upon stabilization by thermal treatment in oxygen atmosphere are also considered. The size of the Pd particles can be varied roughly between 1 and 100 nm. The growth and morphology of the Pd particles on the Fe(3)O(4)/Pt(111) film were characterized by STM and IRAS of adsorbed CO as a probe molecule. It was found that very small Pd particles on Fe(3)O(4) show a strongly modified adsorption behavior, characterized by atypically weak CO adsorption and a characteristic CO stretching frequency around 2130 cm(-1). This modification is attributed to a strong interaction with the support. Additionally, the kinetics of CO adsorption was studied by sticking coefficient experiments as a function of particle size. For small particles it is shown that the CO adsorption rate is significantly enhanced by the capture zone effect. The absolute size of the capture zone was quantified on the basis of the STM and sticking coefficient data. Finally, oxygen adsorption was studied by means of MB CO titration experiments. Pure chemisorption of oxygen is observed at 400 K, whereas at 500 K partial oxidation of the particles occurs. The oxidation behavior reveals strong kinetic hindrances to oxidation for larger particles, whereas facile oxidation and reduction are observed for smaller particles. For the latter, estimates point to the formation of oxide layers which, on average, are thicker than the surface oxides on corresponding single crystal surfaces.  相似文献   

8.
Understanding nanoparticle-formation reactions requires multi-technique in situ characterisation, since no single characterisation technique provides adequate information. Here, the first combined small-angle X-ray scattering (SAXS)/wide-angle X-ray scattering (WAXS)/total-scattering study of nanoparticle formation is presented. We report on the formation and growth of yttria-stabilised zirconia (YSZ) under the extreme conditions of supercritical methanol for particles with Y(2)O(3) equivalent molar fractions of 0, 4, 8, 12 and 25 %. Simultaneous in situ SAXS and WAXS reveals a quick formation (seconds) of sub-nanometre amorphous material forming larger agglomerates with subsequent slow crystallisation (minutes) into nanocrystallites. The amount of yttria dopant is shown to strongly affect the crystallite size and unit-cell dimensions. At yttria-doping levels larger than 8 %, which is known to be the stoichiometry with maximum ionic conductivity, the strain on the crystal lattice is significantly increased. Time-resolved nanoparticle size distributions are calculated based on whole-powder-pattern modelling of the WAXS data, which reveals that concurrent with increasing average particle sizes, a broadening of the particle-size distributions occur. In situ total scattering provides structural insight into the sub-nanometre amorphous phase prior to crystallite growth, and the data reveal an atomic rearrangement from six-coordinated zirconium atoms in the initial amorphous clusters to eight-coordinated zirconia atoms in stable crystallites. Representative samples prepared ex situ and investigated by transmission electron microscopy confirm a transformation from an amorphous material to crystalline nanoparticles upon increased synthesis duration.  相似文献   

9.
A new mechanism for mesostructure formation of ordered mesoporous carbons (OMCs) was investigated with in situ small-angle X-ray scattering (SAXS) measurements: thermally induced self-assembly. Unlike the well-established evaporation-induced self-assembly (EISA), the structure formation for organic-organic self-assembly of an oligomeric resol precursor and the block-copolymer templates Pluronic P123 and F127 does not occur during evaporation but only by following a thermopolymerization step at temperatures above 100 °C. The systems investigated here were cubic (Im3m), orthorhombic Fmmm) and 2D-hexagonal (plane group p6mm) mesoporous carbon phases in confined environments, as thin films and within the pores of anodic alumina membranes (AAMs), respectively. The thin films were prepared by spin-coating mixtures of the resol precursor and the surfactants in ethanol followed by thermopolymerization of the precursor oligomers. The carbon phases within the pores of AAMs were made by imbibition of the latter solutions followed by solvent evaporation and thermopolymerization within the solid template. This thermopolymerization step was investigated in detail with in situ grazing incidence small-angle X-ray scattering (GISAXS, for films) and in situ SAXS (for AAMs). It was found that the structural evolution strongly depends on the chosen temperature, which controls both the rate of the mesostructure formation and the spatial dimensions of the resulting mesophase. Therefore the process of structure formation differs significantly from the known EISA process and may rather be viewed as thermally induced self-assembly. The complete process of structure formation, template removal, and shrinkage during carbonization up to 1100 °C was monitored in this in situ SAXS study.  相似文献   

10.
The voltammetric behaviour of smooth palladium electrodes in 1 M NaOH is studied in the potential range related to the thermodynamic stability of water. The electrosorption of H atoms on bulk Pd appears as a reversible reaction coupled to a diffusion process which occurs within bulk Pd. The voltammetric electrodesorption of H from bulk Pd is a process under mixed control, i.e. the diffusion from the bulk and the surface oxidation of H atoms. Fast pseudocapacitive reactions are detected in the range 0.2–0.4 V associated with the adsorption of H atoms at the submonolayer level. The initial stages of Pd oxide layer formation, at ca. 0.68 V, involves two reversible stages. The Pd oxide monolayer formation is achieved at 1.25 V/RHE and is followed by the formation of a third reversible system. This system is enhanced by an excursion in the potential range of the oxygen evolution reaction. This reversible system is probably a redox system involving Pd(II)/Pd(IV) species. The voltammetric electroreduction of the Pd oxide film shows rather irreversible behaviour. Inhibition effects on the reversible adsorption of H atoms due to residual oxide species were observed as well as inhibition on loading the Pd electrode with hydrogen to form the (α + β)-PdH phase. Rotating ring-disc experiments demonstrate that Pd electrodissolution in basic solutions is much smaller than in acid solutions. However, soluble palladium species are detected, especially during the formation of the fast redox systems, in the potential range related to Pd oxide layer growth.  相似文献   

11.
The selectivity towards CO2 during steam reforming of methanol on Pd increases in the order Al2O3 < ZrO2 < ZnO. However, conventional catalyst preparation can damage the ZnO surface, even causing complete dissolution. The faceted, prismatic ZnO crystals in the support (Aldrich) get easily destroyed during catalyst preparation. We show in this work that, by using organic precursors, the faceted ZnO particles can be preserved. The role of ZnO morphology on reactivity for methanol steam reforming (MSR) is explored. Since the MSR reactivity and selectivity is also a function of the particle size of the nanoparticles as well as the presence of the PdZn ordered alloy phase, we have controlled for both these parameters to derive the true influence of the support. We find that the catalyst prepared from an organic precursor is more active than one prepared from acidic precursors, despite having similar particle size and extent of bulk PdZn ordered alloy formation. The results suggest that preserving certain ZnO surfaces is beneficial, and the ZnO support may play an important role in the overall reaction of methanol steam reforming.  相似文献   

12.
The formation of zeolite A (LTA) in the presence of tetramethylammonium cations is studied using in situ small angle and wide angle X-ray scattering (SAXS/WAXS) techniques. The SAXS measurements show the formation of homogeneous precursors 10 nm in size prior to the crystallization of LTA which were consumed during the crystallization. The crystal size is estimated by fitting the SAXS patterns with an equation for a cubic particle, and it is revealed that the final crystal size of the LTA depends on the synthesis temperature. However, although such temperature dependence is noted for the final crystal size, the initial precursor particles size appears to be closely similar (ca. 10 nm) irrespective of the synthesis temperature.  相似文献   

13.
Boehmite (AlOOH) nanoparticles have been synthesized in subcritical (300 bar, 350 °C) and supercritical (300 bar, 400 °C) water. The formation and growth of AlOOH nanoparticles were studied in situ by small‐ and wide‐angle X‐ray scattering (SAXS and WAXS) using 80 keV synchrotron radiation. The SAXS/WAXS data were measured simultaneously with a time resolution greater than 10 s and revealed the initial nucleation of amorphous particles takes place within 10 s with subsequent crystallization after 30 s. No diffraction signals were observed from Al(OH)3 within the time resolution of the experiment, which shows that the dehydration step of the reaction is fast and the hydrolysis step rate‐determining. The sizes of the crystalline particles were determined as a function of time. The overall size evolution patterns are similar in sub‐ and supercritical water, but the growth is faster and the final particle size larger under supercritical conditions. After approximately 5 min, the rate of particle growth decreases in both sub‐ and supercritical water. Heating of the boehmite nanoparticle suspension allowed an in situ X‐ray investigation of the phase transformation of boehmite to aluminium oxide. Under the wet conditions used in this work, the transition starts at 530 °C and gives a two‐phase product of hydrated and non‐hydrated aluminium oxide.  相似文献   

14.
Formation mechanisms of silver (Ag) particles in an aqueous ethanol solution of poly(N-vinyl-2-pyrrolidone) (PVP) by the photoreduction of AgClO(4) were investigated by means of in situ small-angle X-ray scattering (SAXS) measurements. The kinetics of association process (nucleation, growth, and coalescence) of Ag(0) atoms to produce Ag particles was successfully revealed by the quantitative SAXS analysis for the number-average of radius (R(0)), number of particles (n(Ag)), reduced standard deviation (σ(R)/R(0)), and volume fraction (?(Ag)) of Ag particles produced by the photoreduction. The rate of nucleation and growth process during Ag particle formation strongly depend on the initial metal concentration. The time evolution of radius and number of Ag particles indicates that a mechanism of Ag particle formation is composed of different three processes, that is, reduction-nucleation, Ostwald ripening, and particle coalescence. In a rapid reduction-nucleation process, small nuclei or particles (average radius ~2.5 nm) are produced by an autocatalytic reduction. After the formation of small nuclei or particles proceeds, Ostwald ripening and particle coalescence, predicted by the Lifshitz-Slyozov-Wagner theory (LSW theory), subsequently occur, resulting in the particle growth (average radius ~11.5 nm).  相似文献   

15.
通过一系列原位、非原位表征,包括透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、程序升温解吸/还原/氧化(TPD/TPR/TPO)、X射线光电子能谱(XPS)等,系统地研究了Pd/FeOx催化剂的逆水煤气变换反应(RWGS)。以Pd(acac)2为前驱体合成了高度分散的Pd/FeOx催化剂,在400℃下,RWGS的CO2转化率高达29%,CO选择性超过98%,在目前文献中报道的催化剂中处于领先水平。通过原位表征方法,我们进一步研究了Pd/SiO2和Pd-Fe/SiO2,并明确指出了Pd-FeOx界面对促进RWGS反应的重要作用。准原位XPS实验进一步揭示了Pd/FeOx界面上动态形成的Pd^δ+-Fe^2+物种是高效催化C=O离解的活性位点。因此,实验结果证明,反应过程中动态形成的Pd^δ+-Fe^2+界面可以显著提高RWGS的活性和选择性,对CO2吸附、C=O解离和CO脱附都起到的促进作用。  相似文献   

16.
A major research theme to emerge in the science and technology of materials is the incorporation of nanostructure into the functionality of properties. Such nanostructured materials can offer distinct advantages over bulk materials, partly because the physical properties of the material itself can vary in a tunable, size-dependent fashion. Of course, in addition, nanoparticles offer a greatly increased surface area for chemical reaction. Typical methods for nanoparticle synthesis include: reaction in the liquid phase using the sol–gel approach and mechanical ball-milling of the bulk material; both of these approaches are somewhat problematic for the preparation of reactive nanostructured materials which are sensitive to air and/or moisture. We report here the formation of crystalline nanoparticles of sodium hydride encapsulated in a host amorphous silica gel matrix. These nanoparticles are formed by in situ hydrogenation of a precursor material—Na loaded silica gel—under mild conditions. The resulting material is considerably less pyrophoric and less air-sensitive than the bulk hydride. We anticipate that this formation method of in situ modification of reactive precursor material may have wide applications.  相似文献   

17.
A novel method of making silver nanoparticles in water-in-oil microemulsions using the surfactants as both the reducing agent and as the structure-directing agent is presented. Since no external strong reducing agent is used the kinetics of the formation is slow, which makes it possible to study the silver nanoparticle formation in situ. The microemulsions used were based on either the nonionic surfactant Brij30 (C12E4), which reduces the silver ion to metallic silver and is thereby partly oxidized, or mixtures of Brij30 and AOT (sodium bis(2-ethylhexyl) sulfosuccinate, where the latter does not reduce the silver ions. The influences of silver ion and nonionic surfactant concentrations on the formation kinetics of the nanoparticles were followed in situ using UV-vis spectroscopy, and both parameters were found to have a big influence. The microemulsion droplet's size, size distribution, and shape were examined by small-angle X-ray scattering (SAXS), and the formed silver nanoparticles were studied using both transmission electron microscopy and SAXS. The SAXS measurements showed that the presence of silver nitrate does not affect the microemulsion systems noticeably and that the droplet's size and shape are retained during the particle formation. It is shown that the size and morphology of the particles do not directly follow the shape and size of the microemulsion droplets even though there is a relation between the droplet size and the radii of the formed particles.  相似文献   

18.
We report the bioassisted synthesis of gold nanoparticle/silica (Au NP/silica) tubes using layer-by-layer (LBL) assembled poly(L-lysine)/poly(L-tyrosine) (PLL/PLT) multilayer films deposited on the polycarbonate (PC) membrane pores as both mediating agents and templates. The novelty of this approach is the in situ synthesis of Au NP/silica tubes using PLL/PLT multilayer films for sequential growth of Au NPs and silicas. The experimental data revealed that the buildup of the LBL multilayer films was mainly driven by the formation of hydrogen bond and the polypeptide macromolecular assemblies adopted mainly β-sheet conformation. The as-prepared Au NP/silica tubes possessed promising catalytic activity toward the reduction of p-nitrophenol. The synthesis conditions such as the concentration of gold precursor and polypeptide molecular weight were found to influence the gold weight ratio and particle size in the tubes and the catalytic properties of the Au NP/silica tubes. This approach provides a facile, robust, and green method to obtain nonaggregated metal nanoparticles immobilized in porous oxide network at ambient conditions. Using the synergy between biomimetic or bioassisted synthesis of nanostructured materials and LbL assembly technique, a variety of structures such as films, tubes, and capsules comprising of multiple compositions can be obtained.  相似文献   

19.
The selectivity in the hydrogenation of acrolein over Fe3O4‐supported Pd nanoparticles has been investigated as a function of nanoparticle size in the 220–270 K temperature range. While Pd(111) shows nearly 100 % selectivity towards the desired hydrogenation of the C=O bond to produce propenol, Pd nanoparticles were found to be much less selective towards this product. In situ detection of surface species by using IR‐reflection absorption spectroscopy shows that the selectivity towards propenol critically depends on the formation of an oxopropyl spectator species. While an overlayer of oxopropyl species is effectively formed on Pd(111) turning the surface highly selective for propenol formation, this process is strongly hindered on Pd nanoparticles by acrolein decomposition resulting in CO formation. We show that the extent of acrolein decomposition can be tuned by varying the particle size and the reaction temperature. As a result, significant production of propenol is observed over 12 nm Pd nanoparticles at 250 K, while smaller (4 and 7 nm) nanoparticles did not produce propenol at any of the temperatures investigated. The possible origin of particle‐size dependence of propenol formation is discussed. This work demonstrates that the selectivity in the hydrogenation of acrolein is controlled by the relative rates of acrolein partial hydrogenation to oxopropyl surface species and of acrolein decomposition, which has significant implications for rational catalyst design.  相似文献   

20.
用新的方法将PbS纳米微粒复合在聚苯乙烯光学塑料中,并利用吸收光谱、小角X-光散射和透射电镜等方法研究了不同反应条件对复合的硫化铅(PbS)纳米微粒粒度及分布的影响.结果表明,在一定范围内H2S的量和初始含铅聚合物浓度对纳米微粒的粒度影响很小,但对其粒度分布影响较大;当H2S与Pb2+的摩尔比及初始含铅聚合物浓度均较大时,纳米微粒的粒度分布变宽.实验结果表明复合于聚苯乙烯中的PbS的粒度分布是由溶液中反应决定的,本体聚合反应时对PbS微粒的粒度分布影响很小.因此控制适当反应条件,可以得到粒度分布均一、分散均匀且透明性好的PbS纳米微粒复合有机光学材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号