首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The exclusive ability of laser radiation to be focused inside transparent materials makes lasers a unique tool to process inner parts of them unreachable with other techniques. Hence, laser direct-write can be used to create 3D structures inside bulk materials. Infrared femtosecond lasers are especially indicated for this purpose because a multiphoton process is usually required for absorption and high resolution can be attained. This work studies the modifications produced by 450 fs laser pulses at 1027 nm wavelength focused inside a photostructurable glass-ceramic (Foturan®) at different depths. Irradiated samples were submitted to standard thermal treatment and subsequent soaking in HF solution to form the buried microchannels and thus unveil the modified material. The voxel dimensions of modified material depend on the laser pulse energy and the depth at which the laser is focused. Spherical aberration and self-focusing phenomena are required to explain the observed results.  相似文献   

2.
After the development of a novel XeCl excimer laser with a nearly diffraction-limited beam and 175 ns pulse length, research was done on different industrial applications of this laser. Hole drilling, one of these applications, was studied extensively. A better understanding of the drilling process is necessary to optimise the drilling efficiency and to control the quality of the holes. A shadowgraphic imaging technique was used for studying the removal of material from the hole and the absorption of the laser beam by this removed material. Images were made at successive times both during and after the laser pulse.In drilling of thin foils, it was shown that the material was ejected mainly after the laser pulse. A comparison of different materials showed that the drilling process should be optimised for each material independently. Furthermore, the plume was found to be not fully transparent for processing materials with a strong absorption line at or near the laser wavelength. The correlation between material and drilling speed suggests improved energy transfer and improved melt ejection for the materials with this absorption. PACS 42.62.Cf; 52.38.Dx; 52.38.Mf  相似文献   

3.
超短激光脉冲对宽带光学物质的微加工   总被引:4,自引:4,他引:0       下载免费PDF全文
刘青  陈钧均  郭丽丽 《应用光学》2006,27(5):428-431
通过讨论超快飞秒激光脉冲和长脉冲宽度的激光脉冲紧导致宽能隙透明电介质的损伤机理和比较超短激光脉冲与长激光脉冲对宽能隙透明电介质的损伤程度,得出超短激光脉冲是一种可对透明宽带电介质进行加工的有效工具的结论。当波长为800nm,脉冲宽度为150fs的激光脉冲紧聚焦到不同的宽能隙透明电介质(K9玻璃和ZK6玻璃)体内时,可制作不同光栅常数的光栅,并在波长为635nm的He-Ne连续激光的垂直照射下,对光栅的远场相对衍射效率和光栅的衍射效率进行了测量。  相似文献   

4.
Recently, femtosecond laser direct writing in porous glass is emerging as a powerful technique for building arbitrary 3D hollow micro/nanostructures in bulk glass materials. In this study, we investigate the pulse duration dependence of laser intensity window for inducing a single nanocrack inside porous glass by femtosecond laser direct writing. We find that the window for a single nanocrack increases with the pulse duration, while the roughness of side walls in the nanocracks becomes higher for pulses longer than ~300 fs. When the femtosecond laser pulses of an optimized duration of ~200 fs are chosen, a sufficiently broad range of laser intensity (~44 % of the structuring threshold) for creating a single nanocrack can be obtained, while smooth sidewalls required by nanofluidic applications can still be maintained. The reported results will be beneficial not only for the development of the 3D femtosecond laser micro/nanostructuring techniques, but also for gaining a deeper understanding of the physical mechanism behind the nanograting formation induced by femtosecond laser irradiation in glass and other transparent materials.  相似文献   

5.
Femtosecond laser is a perfect laser source for materials processing when high accuracy and small structure size are required. Due to the ultra short interaction time and the high peak power, the process is generally characterized by the absence of heat diffusion and, consequently molten layers. Various induced structures have been observed in materials after the femtosecond laser irradiation. Here, we report on fabrication of micro-optical devices by the femtosecond laser. 1) formation of optical waveguide with internal loss less than 0.5dB/cm in the wavelength region from 1.2 to 1.6 mm, by translating a silica glass perpendicular to the axis of the focused femtosecond laser beam; 2) nano-scale valence state manipulation of active ions inside transparent materials; 3) space-selective precipitation and control of metal nanoparticles inside transparent materials; The mechanisms and applications of the femtosecond laser induced phenomena were also discussed.  相似文献   

6.
Femtosecond laser application for high capacity optical data storage   总被引:2,自引:0,他引:2  
A femtosecond (fs) laser application for multi-layer optical recording is investigated. Information patterns at different layer depths were written inside a transparent glass substrate due to micro-void formation by fs laser ablation, which causes re-distribution in glass materials and a refractive index modification. The information bits recorded in a single layer can be retrieved clearly without interference from the neighboring layers. A fs laser irradiation of a transparent polymer matrix (doped with fluorescent materials for use as low-cost recording media) is also studied. A fs laser induced photo-chemical reaction changes the chemical properties of the fluorescent materials and records information bits inside the matrix. With an ultra-fast laser as a new light source, 3D optical recording can be available for high capacity data storage up to 1 TB per disc. PACS 82.50.-m; 42.65. Re; 72.70.Jk.  相似文献   

7.
Zhao Y  Liang Y  Zhang N  Wang M  Zhu X 《Optics letters》2008,33(21):2467-2469
The effects of different laser pulse widths on laser-induced ionization imaging of microstructures embedded in transparent materials are investigated. It is shown that a femtosecond laser-induced ionization probe can detect the variation of elemental composition of the sample materials with a higher contrast ratio, whereas the ionization probe generated by picosecond laser pulses is more sensitive to the structural change inside optical materials, which can be well explained by the different roles of multiphoton ionization and avalanche ionization involved in material breakdown. These results also suggest that an optimum diagnosis could be obtained if well-selected laser parameters are employed in ultrafast laser ionization imaging.  相似文献   

8.
Short and intense laser pulse can process the surface and the inside of transparent materials by focusing the pulse at the desired position. Here we report the interaction of fundamental radiation (1064 nm) of the Q-switched Nd:YAG laser to the surface of PMMA as observed by an imaging system with nanosecond time resolution. The system used fundamental radiation of a Q-switched Nd:YAG laser as a processing laser and second harmonic radiation (532 nm) of another Nd:YAG laser as illuminating light. We observed shock waves which propagate into the material and into the atmosphere by shadowgraph and photoelastic method. Surface roughness of a sample is expected to affect the coupling of light and transparent materials for both normal and focused laser light. Our results have revealed the effects visually. For roughness larger than 0.6 m, all energy is absorbed at the surface, while the larger part of the energy is absorbed inside the material as the surface becomes smoother. PACS 52.38.MF; 79.20.DS; 87.63.Lk  相似文献   

9.
The morphology of a glass surface having a transparent coating processed with focused femtosecond laser pulses is investigated. The transparent coating is formed of poly-methyl methacrylate (PMMA). When the glass was coated with a PMMA film with a thickness of 2.8 μm, bumps were formed over a wide range of axial focus positions. The same laser pulse energy produced cavities when processing bare glass with no coating. The bumps were formed as a result of suppressing material emission from the glass surface by a shielding effect of plasma generated by ablation of the PMMA film and by physical blocking of the PMMA film. A thinner film with a thickness of 0.7 μm produced a reduced shielding effect, forming an exploded bump with a small pit at its center and debris around the periphery. PACS 44.10.+i; 61.80.Ba; 79.20.Ds  相似文献   

10.
飞秒脉冲在透明材料中的三维光存储及其机理   总被引:5,自引:17,他引:5  
使用经钛宝石啁啾脉冲放大的脉冲宽度为200fs、波长为800nm、重复频率为1kHz的超短脉冲激光束,紧聚焦到熔融石英中实现了三维逐位式光数据存储,记录下20层三维数据位点,利用CCD和数码相机对数据位进行了观察讨论了飞秒超短脉冲与透明介质的相互作用,以及产生等离子体的雪崩电离和多光子吸收电离的机理实验结果表明:在飞秒超短脉冲与透明光学介质的相互作用中起主要作用的是多光子吸收.  相似文献   

11.
When a femtosecond laser pulse is focused at the interface of two transparent substrates, localised melting and quenching of the two substrates occur around the focal volume, bridging them due to nonlinear absorption. The substrates can then be joined by resolidification of the materials. We investigate the optimum irradiation conditions needed to join borosilicate glass substrates and fused silica substrates using a 1 kHz 800 nm Ti:sapphire amplifier. We characterised the joint strength and the transmittance through joint volumes as a function of laser energy and translation velocity. We found that a joining strength as large as 14.9 MPa could be obtained in both fused silica and borosilicate glass. Annealing the joint samples led to an increase in the joint strength. PACS 42.65.Jx; 42.70.Ce; 81.20.Vj  相似文献   

12.
Li Y  Itoh K  Watanabe W  Yamada K  Kuroda D  Nishii J  Jiang Y 《Optics letters》2001,26(23):1912-1914
By moving silica glass in a preprogrammed structure, we directly produced three-dimensional holes with femtosecond laser pulses in single step. When distilled water was introduced into a hole drilled from the rear surface of the glass, the effects of blocking and redeposition of ablated material were greatly reduced and the aspect ratio of the depth of the hole was increased. Straight holes of 4-mu;m diameter were more than 200 microm deep. Three-dimensional channels can be micromachined inside transparent materials by use of this method, as we have demonstrated by drilling a square-wave-shaped hole inside silica glass.  相似文献   

13.
Internal modification of transparent materials such as glass can be carried out using multiphoton absorption induced by a femtosecond (fs) laser. The fs‐laser modification followed by thermal treatment and successive chemical wet etching in a hydrofluoric (HF) acid solution forms three‐dimensional (3D) hollow microstructures embedded in photosensitive glass. This technique is a powerful method for directly fabricating 3D microfluidic structures inside a photosensitive glass microchip. We used fabricated microchips, referred to as a nanoaquarium, for dynamic observations of living microorganisms. In addition, the present technique can also be used to form microoptical components such as micromirrors and microlenses inside the photosensitive glass, since the fabricated structures have optically flat surfaces. The integration of microfluidics and microoptical components in a single glass chip yields biophotonic microchips, in other words, optofluidics, which provide high sensitivity in absorption and fluorescence measurements of small volumes of liquid samples.  相似文献   

14.
The laser-induced backside dry etching (LIBDE) investigated in this study makes use of a thin metal film deposited at the backside of a transparent sample to achieve etching of the sample surface. For the time-resolved measurements at LIBDE fused silica samples coated with 125 nm tin were used and the reflected and the transmitted laser intensities were recorded with a temporal resolution of about 1 ns during the etching with a ∼30 ns KrF excimer laser pulse. The laser beam absorption as well as characteristic changes of the reflection of the target surface was calculated in dependence on the laser fluence in the range of 250-2500 mJ/cm2 and the pulse number from the temporal variations of the reflection and the transmission. The decrease of the time of a characteristic drop in the reflectivity, which can be explained by the ablation of the metal film, correlates with the developed thermal model. However, the very high absorption after the film ablation probably results in very high temperatures near the surface and presumably in the formation of an absorbing plasma. This plasma may contribute to the etching and the surface modification of the substrate. After the first pulse a remaining absorption of the sample was measured that can be discussed by the redeposition of portions of the ablated metal film or can come from the surface modification in the fused silica sample. These near-surface modifications permit laser etching with the second laser pulse, too.  相似文献   

15.
The indirect laser processing approach (LIBWE) laser-induced backside wet etching allows defined microstructuring of transparent materials at low laser fluences with high quality. The optical and the thermal properties of the solid/liquid interface determine the temperatures and therefore the etching mechanism in conjunction with the dynamic processes at the interface due to the fast heating/cooling rates. The exploration of organic liquid solvents and solutions such as 0.5 M pyrene/toluene results in low etch rates (∼20 nm/pulse). By means of liquid metals as absorber here, demonstrated for gallium (Ga), etch rates up to 600 nm/pulse can be achieved. Regardless of the high etch rates a still smooth surface similar to etching with organic liquid solutions can be observed. A comparative study of the two kinds of absorbing liquids, organic and metallic, investigates the etch rates regarding the fluence and pulse quantity. Thereby, the effect of incubation processes as result of surface modification on the etching is discussed. In contrast to pyrene/toluene solution the metallic absorber cannot decompose and consequently no decomposition products can alter the solid/liquid interface to enhance the absorption for the laser radiation. Hence, incubation can be neglected in the case of the silica/gallium interface so that this system is a suitable model to investigate the primary processes of LIBWE. To prove the proposed thermal etch mechanism an analytical temperature model based on a solution of the heat equation is derived for laser absorption at the silica/gallium interface.  相似文献   

16.
王先华  陈烽  杨青  陈涛  梁松 《应用光学》2007,28(2):191-194
鉴于飞秒激光脉冲持续时间极短且峰值功率极高,将其紧聚焦到透明介质体内部时,易引发双光子效应、碰撞电离、雪崩击穿等一系列非线性过程,在焦点处产生微爆,从而形成微腔结构。提出采用25fs的激光脉冲在透明介质内部诱导形成微腔结构。分析了微腔的能量阈值。结合三维精密位移台,制备了三维微腔点阵。探讨了超短激光脉冲在透明介质内部形成微腔结构的方法与基本实验参数。试验发现:采用更短脉宽的飞秒脉冲时可以降低微腔形成的能量阈值;通过调整飞秒激光功率、脉冲作用次数和光束聚焦情况等因素,可以有效改变微腔的纵深比;在数值孔径较低时因无法实现紧聚焦,故不能形成微腔。  相似文献   

17.
Crystalline TiO2 was induced three dimensionally inside Bi-free glass sample by an 800 nm, 250-kHz femtosecond laser irradiation. Micro-Raman spectra analysis indicated that the laser-induced crystals in the focal point of the laser beam were monophase TiO2 rutile. Continuous crystalline lines were written through moving the focal point of the laser beam inside the glass. The results demonstrate that this technique is a convenient method to engrave three-dimensional patterns of crystals for fabricating integrated optical devices in transparent materials.  相似文献   

18.
One of the challenges of current laser material processing is the high-quality etching of transparent materials for micro-optical applications. The ablation of transparent materials with UV-, ultrashort pulse and even of VUV-lasers is characterized by a high etch rate and a high laser fluence and causes considerable surface roughness evolution. The combination of specific laser processing techniques, e.g., scanning contour mask technique and direct writing with a small laser spot, with laser-induced backside wet etching (LIBWE) allows the direct machining of dielectric materials with an almost optical quality for the fabrication of diffractive as well as refractive topographic features. The etching of multi-level elements, gratings with variable depth, micro-lenses as well as free-form surface topographies with PV-values from some 100 nm to a few micrometers, a nanometer depth accuracy and a low roughness of less than 10 nm rms is presented and demonstrates the capabilities of this approach for precision engineering.  相似文献   

19.
The mechanisms of nonlinear absorption in transparent materials under irradiation with ultrashort laser pulses are considered theoretically. Nitride semiconductor, sapphire and others transparent dielectrics were investigated. The ablation threshold for these materials is within multi-TW/cm2 range. The model was used based on the tunneling absorption under the irradiation by high-intensity ultrashort pulses in terms of the theory of ionization of solid in a field of strong electromagnetic wave. The effect of the energy gap of material on the threshold of laser ablation was adequately explained.  相似文献   

20.
Optical properties of Cr,Yb:YAG, Cr,Nd:YAG crystals, and composite Yb:YAG/Cr:YAG ceramics self-Q-switched solid-state laser materials are presented. The merits of these self-Q-switched laser materials are given and the potentials of such lasers can be chosen by the applications. Cr,Yb:YAG and composite Yb:YAG/Cr:YAG ceramics self-Q-switched laser are conducted. Although several tens of kW peak power can be obtained with a monolithic microchip Cr,Yb:YAG laser, the experimental results show that the performance of this laser is limited by the absorption of Cr4+ ions at a pump wavelength of 940 nm and strong fluorescence quenching at high Cr concentration. Composite Yb:YAG/Cr:YAG ceramics are more suitable to realize high pulse energy and peak power (up to MW level) with optimized lasing and Q-switching parts. In addition, the instabilities induced by the multi-longitudinal mode competition in Cr,Nd:YAG and Cr,Yb:YAG microchip lasers are addressed. The different gain bandwidths of Yb:YAG and Nd:YAG play an important role in the instability of the output laser pulse trains. Stable laser pulses from the Cr,Yb:YAG microchip laser were obtained due to the antiphase dynamics. For the Cr,Nd:YAG microchip laser, the instability caused by the multi-longitudinal mode competition is an intrinsic property. Different transverse patterns were observed in Cr,Nd:YAG microchip lasers when a pump beam with larger diameter was used. Saturated inversion population distribution inside the gain medium plays an important role in the transverse pattern formation. Different transverse patterns were reconstructed by combining different sets of the Hermite-Gaussian modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号