首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coordination Chemistry of P-rich Phosphanes and Silylphosphanes. XVI [1] Reactions of [g2-{P–PtBu2}Pt(PPh3)2] and [g2-{P–PtBu2}Pt(dppe)] with Metal Carbonyls. Formation of [g2-{(CO)5M · PPtBu2}Pt(PPh3)2] (M = Cr, W) and [g2-{(CO)5Cr · PPtBu2}Pt(dppe)] [η2-{P–PtBu2}Pt(PPh3)2] 4 reacts with M(CO)5 · THF (M = Cr, W) by adding the M(CO)5 group to the phosphinophosphinidene ligand yielding [η2-{(CO)5Cr · PPtBu2}Pt(PPh3)2] 1 , or [η2-{(CO)5W · PPtBu2}Pt(PPh3)2] 2 , respectively. Similarly, [η2-{P–PtBu2}Pt(dppe)] 5 yields [η2-{(CO)5Cr · PPtBu2}Pt(dppe)] 3 . Compounds 1 , 2 and 3 are characterized by their 1H- and 31P-NMR spectra, for 2 and 3 also crystal structure determinations were performed. 2 crystallizes in the monoclinic space group P21/n (no. 14) with a = 1422.7(1) pm, b = 1509.3(1) pm, c = 2262.4(2) pm, β = 103.669(9)°. 3 crystallizes in the triclinic space group P1 (no. 2) with a = 1064.55(9) pm, b = 1149.9(1) pm, c = 1693.2(1) pm, α = 88.020(8)°, β = 72.524(7)°, γ = 85.850(8)°.  相似文献   

2.
The α-tocopheroxyl radical was generated voltammetrically by one-electron oxidation of the α-tocopherol anion (r1/2=−0.73 V versus Ag|Ag+) that was prepared by reacting α-tocopherol with Et4NOH in acetonitrile (with Bu4NPF6 as the supporting electrolyte). Cyclic voltammograms recorded at variable scan rates (0.05–10 V s−1), temperatures (−20 to 20°C) and concentrations (0.5–10 mM) were modelled using digital simulation techniques to determine the rate of bimolecular self-reaction of α-tocopheroxyl radicals. The k values were calculated to be 3×103 l mol−1 s−1 at 20°C, 2×103 l mol−1 s−1 at 0°C and 1.2×103 l mol−1 s−1 at −20°C. In situ electrochemical-EPR experiments performed at a channel electrode confirmed the existence of the α-tocopheroxyl radical.  相似文献   

3.
Electroreduction kinetics of to anions at chemically etched (CHE) and electrochemically polished (EP) Bi(1 1 1) electrodes has been studied using rotating disc electrode method. The surface nanostructure of CHE Bi(1 1 1) and EP Bi(1 1 1) electrodes has been studied by in situ STM and the very different values of root mean squared roughness (Rms) have been obtained (1000 times higher for CHE Bi(1 1 1) (Rms  143 nm) than for EP Bi(1 1 1) (Rms  0.145 nm)). The influence of the nanoroughness of CHE Bi(1 1 1) on the current density, heterogeneous reaction rate constant and corrected Tafel plots (cTp) has been demonstrated. For CHE Bi(1 1 1) the more pronounced inhibition of electroreduction reaction at moderate negative surface charge density has been observed in comparison with EP Bi(1 1 1), caused by the differences in surface charge density and also in diffuse layer ψ0 potential drop values at crystallographically different homogeneous regions (planes) exposed at the surface of the macroheterogeneous polycrystalline CHE Bi(1 1 1) surface. The very low apparent transfer coefficient αapp obtained indicates the nearly activationless charge transfer mechanism for electroreduction at the CHE Bi(1 1 1) electrode similarly to EP Bi(1 1 1). However, αapp only very weakly depends on Rms for the Bi electrodes at high negative surface charge densities where the values of ψ0 potential are nearly equal for different planes at fixed electrode potential. At very high negative surface charge densities the cationic catalysis through the adsorbed ion pairs is possible.  相似文献   

4.
The neuronal nicotinic acetylcholine receptors (nAChRs) belong to the ligand-gated ion channel (GLIC) group, presenting a crucial role in several biological processes and neuronal disorders. The α4β2 and α7 nAChRs are the most abundant in the central nervous system (CNS), being involved in challenging diseases such as epilepsy, Alzheimer’s disease, schizophrenia, and anxiety disorder, as well as alcohol and nicotine dependencies. In addition, in silico-based strategies may contribute to revealing new insights into drug design and virtual screening to find new drug candidates to treat CNS disorders. In this context, the pharmacophore maps were constructed and validated for the orthosteric sites of α4β2 and α7 nAChRs, through a docking-based Comparative Intermolecular Contacts Analysis (dbCICA). In this sense, bioactive ligands were retrieved from the literature for each receptor. A molecular docking protocol was developed for all ligands in both receptors by using GOLD software, considering GoldScore, ChemScore, ASP, and ChemPLP scoring functions. Output GOLD results were post-processed through dbCICA to identify critical contacts involved in protein-ligand interactions. Moreover, Crossminer software was used to construct a pharmacophoric map based on the most well-behaved ligands and negative contacts from the dbCICA model for each receptor. Both pharmacophore maps were validated by using a ROC curve. The results revealed important features for the ligands, such as the presence of hydrophobic regions, a planar ring, and hydrogen bond donor and acceptor atoms for α4β2. Parallelly, a non-planar ring region was identified for α7. These results can enable fragment-based drug design (FBDD) strategies, such as fragment growing, linking, and merging, allowing an increase in the activity of known fragments. Thus, our results can contribute to a further understanding of structural subunits presenting the potential for key ligand-receptor interactions, favoring the search in molecular databases and the design of novel ligands.  相似文献   

5.
Dehydroepiandrosterone (DHEA) is an important neurosteroid with neuronal protection and memory enhancement functions. 7α‐OH DHEA and 7β‐OH DHEA are the two important metabolites of DHEA in the brain. We have developed an LC/MS method to quantitatively analyze 7α‐OH DHEA and 7β‐OH DHEA. Chromatographic separation was carried out on a C18 column with gradient elution using mobile phases of formic acid in acetonitrile and in water formic acid. Mass spectral detection was performed with a ThermoFinnigan LCQ advantage quadruple ion trap mass spectrometer with electrospray ionization. Positive ion chromatograms were acquired using single ion monitoring. The protonated molecule was 305 m/z, but the most abundant ion (269 m/z) was used for quantification. This method was validated and applied to investigate the 7‐hydroxylation of DHEA. When incubating DHEA with rat brain microsomes, both 7α‐OH DHEA and 7β‐OH DHEA were observed, but 7α‐OH DHEA was the major metabolite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
申秀民  刘玉美  何兰 《中国化学》2005,23(3):305-309
Lophenol, cholest-4α-methyl-7-en-3β-ol (1), obtained from Dracaena cochinchinensis (Lour.) S. C. Chen, was structurally modified. It was acetylated to protect 3β-hydroxyl group, and then oxidised by selenium dioxide in acetic acid to give cholest-4a-methyl-8-en-3β, Ta-diol diacetate (3). This compound 3 is unstable in chloroform solution or when heated and easily converted to a diene compound, cholest-4a-methyl-7,14-dien-3β-ol acetate (4). The structures of 3 and 4 were elucidated by means of IR, ^1H NMR, ^13C NMR and MS, and the absolute configuration of 3 was established by X-ray crystallography. The property of 3 was also discussed in this paper. Both 3 and 4 are new compounds and were reported for the first time.  相似文献   

7.
The vibrational spectroscopy of a glycine molecule adsorbed on a silicon surface is studied computationally, using different clusters as models for the surface. Harmonic frequencies are computed using density functional theory (DFT) with the B3LYP functional. Anharmonic frequency calculations are carried out using vibrational self-consistent field (VSCF) algorithms on an improved PM3 potential energy surface. The results are compared with experiments on Glycine@Si(1 0 0)-2 × 1.

The main findings are: (1) Agreement of the computed frequencies with experiment improves with cluster size. (2) The anharmonic calculations are generally in better agreement with experiment than the harmonic ones. The improvements due to anharmonicity are most significant for hydrogenic stretching. (3) An important part of the anharmonic effects is due to anharmonic coupling between different normal modes of the system. (4) The anharmonic coupling between glycine vibrational modes is much larger than the anharmonic coupling between glycine and “phonon” (cluster) modes.

Implications of the results for surface vibrational spectroscopy are discussed.  相似文献   


8.
The π–π interactions between CO2 and three aromatic molecules, namely benzene (C6H6), pyridine (C5H5N), and pyrrole (C4H5N), which represent common functional groups in metal‐organic/zeoliticimidazolate framework materials, were characterized using high‐level ab initio methods. The coupled‐cluster with single and double excitations and perturbative treatment of triple excitations (CCSD(T)) method with a complete basis set (CBS) was used to calibrate Hartree–Fock, density functional theory, and second‐order M?ller–Plesset (MP2) with resolution of the identity approximation calculations. Results at the MP2/def2‐QZVPP level showed the smallest deviations (only about 1 kJ/mol) compared with those at the CCSD(T)/CBS level of theory. The strength of π–π binding energies (BEs) followed the order C4H5N > C6H6 ~ C5H5N and was roughly correlated with the aromaticity and the charge transfer between CO2 and aromatic molecule in clusters. Compared with hydrogen‐bond or electron donor–acceptor interactions observed during BE calculations at the MP2/def2‐QZVPP level of theory, π–π interactions significantly contribute to the total interactions between CO2 and aromatic molecules. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
This paper reexamines the structures and energies of dibenzofuran and twenty PCDFs in S1–S3 states. It was demonstrated that, although the CIS method gives a false relative ordering of excited states, the false ordering can be remedied by the CIS(D) method. Moreover the CIS geometries of typical PCDF molecules reasonably agree with their SAC-CI geometries. It was found that molecules chlorinated at the 1- and 9-positions are twisted in the S2 state but are planar in other states, except for 1,4,6,9-TeCDF and fully chlorinated dibenzofuran (OCDF). The twisted structure of 1,4,6,9-TeCDF occurs in the S3 state, but the structure of OCDF is twisted in every state. We partitioned the molecule into the parent structure and four chlorine groups and measured the twist energy with reference to the ground state. Then, the Si ← S0 0–0 transition energies (i = 1, 2) calculated using the CIS(D) and MP2 methods could be expressed as a multiple linear equation with components and twist energy. It was further confirmed that if the multiple linear equation is corrected for residual correlation energies of the parent structure, it can predict the S1 ← S0 0–0 transition energies with high precision.  相似文献   

10.
Reactive E = C(pp)π-Systems. XLII [1]. Novel Coordination Compounds of 2-(Diisopropylamino)-1-phosphaethyne: [{η4-(iPr2NCP)2}Ni{η2-(iPr2NCP)}], [(Ph3P)2Pt{η2-(iPr2NCP)}], and [Co2(CO)622-(iPr2NCP)}] 2-(Diisopropylamino)-phosphaethyne iPr2N? C?P ( 2 ) reacts with the Ni(0)-complexes [Ni(1,5-cyclooctadiene)2] and [Ni(CO)3(1-azabicyclo[2.2.2]octane)], respectively, to give the novel complex [{η4-(iPr2NCP)2}Ni{η2-(iPr2NCP)}] ( 5 ), with the 1,3-diphosphacyclobutadiene derivative and 2 (side-on) as π-ligands. The molecular structure of 5 determined by X-ray diffraction on single crystals proves the spin systems and rotational barriers deduced from NMR-data (1H, 13C-, 31P). The PC distances of the four-membered ring of 1.817(2) and 1.818(2) Å – as expected – are considerably longer than the PC bond of the η2-coordinated phosphaalkyne 2 [1.671(2) Å]. – In the reactions of 2 with [(Ph3P)2Pt(C2H4)] or [Co2(CO)8] the ligand properties of 2 resemble those of alkynes affording the complexes [(Ph3P)2Pt{η2-(iPr2NCP)}] ( 7 ) with side-on coordinated 2 and [Co2(CO)622-(iPr2NCP)}] with 2 acting as a 4e donor bridge in quantitative yield. In attempts to prepare copper(I) complexes of the aminophosphaalkyne 2 by reaction with CuCl or CuI the only isolable product formed in reasonable amounts under the influence of air and moisture is the 1 λ3, 3 λ5-diphosphetene (iPr2N) ( 10 ) (isolated yield: ca. 20%). The crystal structure analysis of 10 indicates a strong structural relationship to the diamino-2-phosphaallyl cation [Me(iPr2N)]+ ( 12 ), the 1,3-diphosphacyclobutadiene ligand (iPr2NCP)2 in the binuclear complex [{η1, μ2-(iPr2NCP)2}Ni2(CO)6] ( 3a ) as well as to the heterocycles (dme)2LiOE2′ (E′ = S, 11a ; E′ = Se, 11b ) prepared by Becker et al. [11b, 35].  相似文献   

11.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes XXI The Influence of the PR3 Ligands on Formation and Properties of the Phosphinophosphinidene Complexes [{η2tBu2P–P}Pt(PR3)2] and [{η2tBu2P1–P2}Pt(P3R3)(P4R′3)] (R3P)2PtCl2 and C2H4 yield the compounds [{η2‐C2H4}Pt(PR3)2] (PR3 = PMe3, PEt3, PPhEt2, PPh2Et, PPh2Me, PPh2iPr, PPh2tBu and P(p‐Tol)3); which react with tBu2P–P=PMetBu2 to give the phosphinophosphinidene complexes [{η2tBu2P–P}Pt(PMe3)2], [{η2tBu2P–P}Pt(PEt3)2], [{η2tBu2P–P}Pt(PPhEt2)2], [{η2tBu2P–P}Pt(PPh2Et)2], [{η2tBu2P–P}Pt(PPh2Me)2], [{η2tBu2P–P}Pt(PPh2iPr], [{η2tBu2P–P}Pt(PPh2tBu)2] and [{η2tBu2P–P}Pt(P(p‐Tol)3)2]. [{η2tBu2P–P}Pt(PPh3)2] reacts with PMe3 and PEt3 as well as with tBu2PMe, PiPr3 and P(c‐Hex)3 by substituting one PPh3 ligand to give [{η2tBu2P1–P2}Pt(P3Me3)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3Ph3)(P4Me3)], [{η2tBu2P1–P2}Pt(P3Et3)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3MetBu2)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3iPr3)(P4Ph3)] and [{η2tBu2P1–P2}Pt(P3(c‐Hex)3)(P4Ph3)]. With tBu2PMe, [{η2tBu2P–P}Pt(P(p‐Tol)3)2] forms [{η2tBu2P1–P2}Pt(P3MetBu2)(P4(p‐Tol)3)]. The NMR data of the compounds are given and discussed with respect to the influence of the PR3 ligands.  相似文献   

12.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. XI. Formation, Reactions, and Structures of Chromium Carbonyl Complexes from Reactions of Li(THF)22-(tBu2P)2P] with Cr(CO)5 · THF and Cr(CO)4 · NBD Reactions of Li(THF)22-(tBu2P)2P] 1 with Cr(CO)5 · THF yield Li(THF)2Et2O[Cr(CO)42-(tBu2P)2P}η1-Cr(CO)5] 2 and the compounds [Cr(CO)42-(tBu2P)2PH}] 3 , [Cr(CO)51-(tBu2P)2PH}] 4 , (tBu2P)2PH 5 and tBu2PH · Cr(CO)5 6 . The formation of 3, 4, 5 and 6 is due to byproducts coming from the synthesis of 1. 2 reacts with CH3COOH under formation of 3 . After addition of 12-crown-4 1 with NBD · Cr(CO)4 in THF forms Li(12-crown-4)2[Cr(CO)4-{η2-(tBu2P)2P}] 7 (yellow crystals). 7 reacts with CH3COOH to 3 – which regenerates 7 with LiBu – with Cr(CO)5THF to compound 2 , with NBD · Cr(CO)4 in THF to 2 and 3 (ratio 1 : 1). With EtBr, 7 forms [Cr(CO)42-(tBu2P)2PEt}] 8 , and [Cr(CO)42-(tBu2P)2PBr}] 9 with BrCH2? CH2Br. The compounds were characterized by means of 1H, 13C, 31P, 7Li NMR spectroscopy, IR spectroscopy, elementary analysis, mass spectra, and 2, 3 and 4 additionally by means of X-ray diffraction analysis. 2 crystallizes in the space group P1 with 2 formula units in the elementary cell; a = 10.137(9), b = 15.295(12), c = 15.897(14) Å; α = 101.82(7), β = 91.65(7), γ = 98.99(7)°; 3 crystallizes in the space group P2t/n with 4 molecules in the elementary unit; a = 11.914(6), b = 15.217(10), c = 14.534(10) Å; α = 90, β = 103.56(5), γ = 90°. 4 : space group P1 with 2 molecules in the elementary unit; a = 8.844(4), b = 12.291(6), c = 14.411(7) Å, α = 66.55(2), β = 89.27(2), γ = 71.44(2)°.  相似文献   

13.
This paper presents a study of enantioselective catalytic oxidation of a variety of differently substituted, cyclic (E) and acyclic (Z)-enol phosphates. The asymmetric oxidation of acyclic (Z)-enol phosphates containing alkoxy substituents in the phosphate group 2a, c, eg, i, and j and Z-configured enol phosphates containing aryloxy substituents in the phosphate group 2b, d, and h afforded optically active α-hydroxy ketones 4aj of opposite configuration with good to high enantioselectivity. The influence of electronic and steric effects of the enol phosphate substituents on the stereoselectivity of oxidation was studied.  相似文献   

14.
The free radical polimerizability behavior of alkyl α‐hydroxymethacrylate (RHMA) derivatives ( M1–M3 ) has been modeled by considering the propagation of the dimeric units of the compounds of interest. All the transition structures in this class of monomers are stabilized by long‐range C?O…H? C interactions. The RHMA monomer bearing the ester functionality ( M2 ) polymerizes slightly faster than the one with the ether functionality ( M1 ) because of stronger electrostatic interactions between the C?O and H? C groups. 2‐(Methoxycarbonyl)allyl benzoate ( M3 ) shows higher reactivity as compared to M1 and M2 due to stronger electrostatic interactions. The same type of study has been carried out for hexyl ( M4 ), benzyl ( M5 ), and phenyl ( M6 ) acrylate derivatives whose increasing reactivity has been attributed to the presence of C?O…H? C, C?O…H‐? as well as π–π stabilizing interactions, respectively. While B3LYP/6‐31+G(d) has been used to locate the stationary points along the free radical polymerization of nonaromatic species, long‐range stabilizing interactions have only been detected with M06‐2X/6‐31+G(d). The kinetics that we obtain with this latter methodology for the free radical polymerization reactions of M1 – M6 agree well qualitatively with experiment. An implicit solvent model has reproduced the kinetics of M1–M3 in benzene the best. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
We have previously suggested a key role of the hippocampus in the preconditioning action of moderate hypobaric hypoxia (HBH). The preconditioning efficiency of HBH is associated with acoustic startle prepulse inhibition (PPI). In rats with PPI > 40%, HBH activates the cholinergic projections of hippocampus, and PNU-282987, a selective agonist of α7 nicotinic receptors (α7nAChRs), reduces the HBH efficiency and potentiating effect on HBH of its solvent dimethyl sulfoxide (DMSO, anticholinesterase agent) when administered intraperitoneally. In order to validate the hippocampus as a key structure in the mechanism of hypoxic preconditioning and research a significance of α7nAChR activation in the hypoxic preconditioning, we performed an in vivo pharmacological study of intrahippocampal injections of PNU-282987 into the CA1 area on HBH efficiency in rats with PPI ≥ 40%. We found that PNU-282987 (30 μM) reduced HBH efficiency as with intraperitoneal administration, while DMSO (0.05%) still potentiated this effect. Thus, direct evidence of the key role of the hippocampus in the preconditioning effect of HBH and some details of this mechanism were obtained in rats with PPI ≥ 40%. The activation of α7nAChRs is not involved in the cholinergic signaling initiated by HBH or DMSO via any route of administration. Possible ways of the potentiating action of DMSO on HBH efficiency and its dependence on α7nAChRs are discussed.  相似文献   

16.
We describe herein an unprecedented asymmetric α‐amination of β‐ketocarbonyls under aerobic conditions. The process is enabled by a simple chiral primary amine through the coupling of a catalytic enamine ester intermediate and a nitrosocarbonyl (generated in situ) derived from N‐hydroxycarbamate. The reaction features high chemoselectivity and excellent enantioselectivity for a broad range of substrates.  相似文献   

17.
Single crystals of the filled Ti2Ni‐type Ti3Zn3Ox η‐phase (cubic, space group Fdm) having {111} facets were obtained by heating Ti, Zn and ZnO with a Bi flux. The lattice parameter of a single crystal prepared at 800°C was 11.4990 (2) Å, which is close to that of Ti3Zn3O∼0.5 (a = 11.502 Å), as reported by Rogl & Nowotny [Monatsh. Chem. (1977), 108 , 1167–1180]. The occupancies of the O1 (16c) and O2 (8a) sites were 1 and 0.071 (12), respectively, and the composition of the crystal was determined to be Ti3Zn3O1.04. A single crystal from the sample prepared at 650°C had the same structure type, with a lattice parameter of 11.5286 (2) Å. However, O atoms were situated at a new 32e site in addition to the original 16c and 8a sites, and the Zn‐atom positions were split in accordance with the new O‐atom site. The chemical formula Ti3Zn3O1.27 determined by X‐ray diffraction occupancy refinement agreed with the chemical composition obtained for the cross section of the single crystal determined with an electron probe microanalyzer.  相似文献   

18.
By using a commercial β‐nucleating agent (TMB‐5) for polypropylene (PP), it was observed that high β‐crystal content in a compatibilized blend of polypropylene/polyamide‐6 (labeled as Blend‐03 in this work) can be achieved for samples prepared by compression moulding. As β‐PP possesses more superior impact strength then α‐PP, and the β to α transformation is an important mechanism of energy absorption for β‐PP, it is of obvious interest to understand the possibilities of β to α transformation in β‐polypropylene/polyamide‐6 blends. Tensile tests were performed at temperatures of 20, 30, 40, and 50 °C, and the occurrence of β to α transformation was monitored by differential scanning calorimeter and wide angle X‐ray diffraction measurements. It was observed that the β to α transformation in Blend‐03 could only be activated at elevated tensile testing temperatures. This was related to the increase in tensile elongation at break with the increase in tensile testing temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2674–2681, 2007  相似文献   

19.
Reactions of the thiocarbamoyl‐molybdenum complex [Mo(CO)22‐SCNMe2)(PPh3)2Cl] 1 , and ammonium diethyldithiophosphate, NH4S2P(OEt)2, and potassium tris(pyrazoyl‐1‐yl)borate, KTp, in dichloromethane at room temperature yielded the seven coordinated diethyldithiophosphate thiocarbamoyl‐molybdenum complexe [Mo(CO)22‐S2P(OEt)2}(η2‐SCNMe2)(PPh3)] β‐3 , and tris(pyrazoyl‐1‐yl)borate thiocabamoyl‐molybdenum complex [Mo(CO)23‐Tp)(η2‐SCNMe2)(PPh3)] 4 , respectively. The geometry around the metal atom of compounds β‐3 and 4 are capped octahedrons. The α‐ and β‐isomers are defined to the dithio‐ligand and one of the carbonyl ligands in the trans position in former and two carbonyl ligands in the trans position in later. The thiocabamoyl and diethyldithiophosphate or tris(pyrazoyl‐1‐yl)borate ligands coordinate to the molybdenum metal center through the carbon and sulfur and two sulfur atoms, or three nitrogen atoms, respectively. Complexes β‐3 and 4 are characterized by X‐ray diffraction analyses.  相似文献   

20.
α-synuclein (α-syn) is a major culprit of Parkinson’s disease (PD), although lipoprotein metabolism is very important in the pathogenesis of PD. α-syn was expressed and purified using the pET30a expression vector from an E. coli expression system to elucidate the physiological effects of α-syn on lipoprotein metabolism. The human α-syn protein (140 amino acids) with His-tag (8 amino acids) was expressed and purified to at least 95% purity. Isoelectric focusing gel electrophoresis showed that the isoelectric point (pI) of α-syn and apoA-I were pI = 4.5 and pI = 6.4, respectively. The lipid-free α-syn showed almost no phospholipid-binding ability, while apoA-I showed rapid binding ability with a half-time (T1/2) = 8 ± 0.7 min. The α-syn and apoA-I could be incorporated into the reconstituted HDL (rHDL, molar ratio 95:5:1:1, palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):cholesterol:apoA-I:α-syn with the production of larger particles (92 Å) than apoA-I-rHDL (86 and 78 Å) and α-syn-rHDL (65 Å). An rHDL containing both apoA-I and α-syn showed lower α-helicity around 45% with a red shift of the Trp wavelength maximum fluorescence (WMF) from 339 nm, while apoA-I-HDL showed 76% α-helicity and 337 nm of WMF. The denaturation by urea addition showed that the incorporation of α-syn in rHDL caused a larger increase in the WMF than apoA-I-rHDL, suggesting that the destabilization of the secondary structure of apoA-I by the addition of α-syn. On the other hand, the addition of α-syn induced two-times higher resistance to rHDL glycation at apoA-I:α-syn molar ratios of 1:1 and 1:2. Interestingly, low α-syn in rHDL concentrations, molar ratio of 1:0.5 (apoA-I:α-syn), did not prevent glycation with more multimerization of apoA-I. In the lipid-free and lipid-bound state, α-syn showed more potent antioxidant activity than apoA-I against cupric ion-mediated LDL oxidation. On the other hand, microinjection of α-syn (final 2 μM) resulted in 10% less survival of zebrafish embryos than apoA-I. A subcutaneous injection of α-syn (final 34 μM) resulted in less tail fin regeneration than apoA-I. Interestingly, incorporation of α-syn at a low molar ratio (apoA-I:α-syn, 1:0.5) in rHDL resulted destabilization of the secondary structure and impairment of apoA-I functionality via more oxidation and glycation. However, at a higher molar ratio of α-syn in rHDL (apoA-I:α-syn = 1:1 or 1:2) exhibited potent antioxidant and anti-glycation activity without aggregation. In conclusion, there might be a critical concentration of α-syn and apoA-I in HDL-like complex to prevent the aggregation of apoA-I via structural and functional enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号