首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
激光空间相干性对照明均匀性的影响   总被引:5,自引:4,他引:1       下载免费PDF全文
 研究了激光相干性对照明均匀性的影响,为照明激光器的选择提供了理论参考。其中,部分相干高斯光束分解为模式间相互独立的厄米-高斯光束的迭加。采用相位屏的近似处理方法对激光通过大气湍流的传输进行计算模拟。数值模拟的结果表明:当照明光束的空间相干性降低时,其照明均匀度逐步提高。因此对于照明激光器而言,选择空间相干性较差的激光器对其照明均匀度更加有益。  相似文献   

2.
The mutual intensity function plays a major role in characterizing quasi-monochromatic, partially coherent optical signals. We propose to use the mutual intensity as a carrier of information to avoid speckle noise in coherent illumination systems and to permit the use of complex functions that are prohibited spatially incoherent sources. To do this we require methods for encoding the information as a coherence function. An optical system for synthesizing a beam with a given mutual intensity function is proposed. The optical system permits the synthesis of any desired mutual intensity function. The illumination is supplied by a quasi-monochromatic, spatially incoherent source. Experimental results demonstrate the performance of this system for several cases.  相似文献   

3.
We report a technique to achieve very uniform illumination of laser irradiated targets by inducing a controlled amount of transverse spatial incoherence in the output beam of a broadband laser. The spatial incoherence is created by imposing different optical delays upon different transverse sections of the beam, and choosing the delay increments to be larger than the laser coherence time tc=1/δν. This technique may allow easy attainment of the pellet illumination uniformity required for laser fusion.  相似文献   

4.
Choi Y  Yang TD  Lee KJ  Choi W 《Optics letters》2011,36(13):2465-2467
We developed an off-axis quantitative phase microscopy that works for a light source with an extremely short spatial coherence length in order to reduce the diffraction noise and enhance the spatial resolution. A dynamic speckle wave whose coherence length is 440 nm was used as an illumination source. To implement an off-axis interferometry for a source of low spatial coherence, a diffraction grating was inserted in the reference beam path. In doing so, an oblique illumination was generated without rotation of the wavefront, which leads to a full-field and single-shot phase recording with improved phase sensitivity of more than a factor of 10 in comparison with coherent illumination. The spatial resolution, both laterally and axially, and the depth selectivity are significantly enhanced due to the wide angular spectrum of the speckle wave. We applied our method to image the dynamics of small intracellular particles in live biological cells. With enhanced phase sensitivity and speed, the proposed method will serve as a useful tool to study the dynamics of biological specimens.  相似文献   

5.
We present experimental demonstrations of spectral diversity filters with spherical beam volume holograms for multimodal multiplex spectroscopy. Major properties of filters under diffuse-light illumination are discussed. The comparisons of spectral diversity between the transmission geometry holograms and the reflection geometry holograms are also studied. The results show that there is a trade-off between the degree of the spatial coherence of the source and the spectral diversity of the filter. We also conclude that the reflection geometry holograms have better spectral diversity and less sensitivity to the spatial coherence of the source.  相似文献   

6.
Recently we have proposed a deterministic phase retrieval method using an aperture-array filter to reconstruct a complex-valued object from a single diffraction intensity pattern. We describe here the effect of quasi-monochromatic partially coherent illumination on the object reconstruction by the phase retrieval method, and then present the method of eliminating the effect of the partially coherent illumination from the diffraction intensity pattern via a simple Fourier deconvolution operation provided that the complex degree of spatial coherence of the illuminating beam is known. The usefulness of this method is shown in computer-simulated examples of the object reconstructions under Gaussian Schell-model partially coherent illumination.  相似文献   

7.
We report on the generation of light carrying orbital angular momentum through Bragg diffraction into an electromagnetically induced coherence grating in a degenerate two-level system of cold cesium atoms. The induced Zeeman coherence grating is shown to contain the spatial phase structure of the incident beams. The exchange of phase information between a light beam with orbital angular momentum and a long-lived atomic coherence opens up the way to process quantum information encoded in a multidimensional state space.  相似文献   

8.
多波长同时照明的菲涅耳域非相干叠层衍射成像   总被引:1,自引:0,他引:1       下载免费PDF全文
潘安  王东  史祎诗  姚保利  马臻  韩洋 《物理学报》2016,65(12):124201-124201
传统的叠层衍射成像往往采用单波长照明,即使使用多波长来提升恢复质量也是采用依次照明的方式,同时对相干性要求很高.非相干光照明一直被认为不利于衍射成像.本文提出了一种多波长同时照明的非相干叠层衍射成像方案及相应的多路复用叠层衍射成像算法,并通过仿真和实验验证了该方案的可行性.相比于传统的相干叠层衍射成像方案,该方案不仅能够很好地恢复物像,同时也能够恢复不同波长下分别对应的物体的光谱响应、复振幅探针和光谱比例,从而获得更多的物体信息,具有多通道和多光谱的优势.同时,通过彩色图像编码的方式,能够实现物体的真彩色复原和图像质量的增强.此外,还证明了该算法具有很强的鲁棒性,研究了最多可分辨波长的数量.该研究结果为叠层衍射成像技术的信息多路复用及多光谱成像在更多领域的应用展现了可能性.  相似文献   

9.
郑华东  于瀛洁  代林茂  王涛 《物理学报》2010,59(9):6145-6151
采用三基色激光照明并结合时分复用或空间复用技术,可实现基于液晶空间光调制器(LC-SLM)的彩色全息显示.但由于在不同激光波长入射条件下LC-SLM的位相调制特性曲线不同,难以同时满足多波长入射条件下2π线性位相调制的要求,致使彩色全息再现结果受到共轭像和零级斑的干扰.针对该问题,本文通过实验测试获得LC-SLM在不同波长入射时的位相调制特性曲线,并分析了RGB激光器各分量的位相调制特性曲线非线性偏差和调制幅度偏差对多阶位相型傅里叶变换相息图再现效果的影响.根据"查表法"建立了各波长入射条件下满足2π线性位相调制的灰度映射关系,并对RGB分量相息图进行修正.通过对修正前后RGB分量相息图的数值模拟再现和光电再现实验与分析,结果表明:该方法有效地克服了LC-SLM位相调制特性曲线偏差的不利影响,从而改善了彩色全息显示中各分量相息图的再现质量.  相似文献   

10.
Xingbing Chao 《中国物理 B》2021,30(8):84212-084212
Owing to the unique feature that the signal and reference waves of self-interference digital holography (SIDH) contain the same spatial information from the same point of object, compared with conventional digital holography, the SIDH has the special spatial coherence properties. We present a statistical optics approach to analyzing the formation of cross-correlation image in SIDH. Our study reveals that the spatial coherence of illumination light can greatly influence the imaging characteristics of SIDH, and the impact extent of the spatial coherence depends substantially on the recording distance of hologram. The theoretical conclusions are supported well by numerical simulation and optical experiments.  相似文献   

11.
Kim YL  Liu Y  Turzhitsky VM  Roy HK  Wali RK  Backman V 《Optics letters》2004,29(16):1906-1908
Coherent backscattering (CBS) of light in random media has been previously investigated by use of coherent light sources. Here we report a novel method of CBS measurement that combines low spatial coherence, broadband illumination, and spectrally resolved detection. We show that low spatial coherence illumination leads to an anomalously broad CBS peak and a dramatic speckle reduction; the latter is further facilitated by low temporal coherence detection. Thus CBS can be observed in biological tissue and other media that previously were beyond the reach of conventional CBS measurements. We also demonstrate, for the first time to our knowledge, spectroscopic analysis of CBS. CBS spectroscopy may find important applications in probing random media such as biological tissue in which depth-selective measurements are crucial.  相似文献   

12.
In this paper, we present an approach that can be used for transmission of 2D spatial information through space-limited systems capable of transmitting even only a single spatial pixel. The input 2D object is illuminated with temporally incoherent illumination. The axial coherence length is very short and it equals only a few microns. Attached to the input object spatial random phase mask generates different axial shift for every pixel of the input. The temporal delays of the encoding (axial shifts) of every pixel are longer than the coherence length of the illuminating source. Therefore no temporal correlation exists between the various pixels of the input. A lens combines all spatial pixels into one point at its focal plane. Although the various spatial pixels were mixed together, since the random mask provided axial delay which was larger than the coherence length of the light source, the orthogonality between the spatial content of every pixel is preserved. The decoding system includes a lens that is positioned at the output of the resolution reduction system and it converts the output light into a plane wave containing all the spatial information of the original image mixed together in all of its pixels. By interfering this plane wave with the same plane wave after passing through the same random spatial coding mask, the spatial information of every pixel of the input object is recovered.  相似文献   

13.
M. Zhang  G. Huo  Y. Zhang  Y. Kang  Z. Duan 《Laser Physics》2012,22(8):1295-1300
We present the observation of incoherent anti-dark photovoltaic solitons in LiNbO3:Fe crystal. This new class of soliton states involves bright photovoltaic solitons on a background beam meeting ?? > 1, where ?? is the ratio of background illumination photovoltaic constant to that of soliton beam. For ?? < 1, dark photovoltaic solitons are generated. Furthermore, this novel type solitons are investigated experimentally by injecting coherent light and partially coherent background of infinite extent. In case of spatial coherence of the background lower than the threshold of incoherent modulation instability, these results indicate that bright photovoltaic solitons can propagate in a stable fashion.  相似文献   

14.
Yi T  Zhang J  Yan L  Gong Q 《Optics letters》2005,30(17):2236-2238
We present a new method with which to implement shift multiplexing by planar waveguide referencing. In this method, a planar waveguide is used to steer the reference beam, and we implement shift multiplexing by shifting the recording medium. A spatial selectivity as high as 1.1 microm is obtained. By using waveguide referencing we can make a compact and simple holographic system.  相似文献   

15.
Low‐coherence optical microscopy or optical coherence microscopy uses light with short coherence length. The well‐known case is: “white‐light interferometry”, which became recently more known as: “optical coherence tomography”. However, when lenses and microscope objectives are used to create interferometric images, in what is known classically as “interference microscopy” or today as “full‐field optical coherence tomography” the spatial coherence starts to play a critical role. In this article the coherence effects in low‐coherence optical microscopy are reviewed. As this technology is becoming increasingly publicized due to its importance in three‐dimensional imaging, particularly of scattering biological media and optical metrology, the understanding of the fundamental physics behind it is essential. The interplay between longitudinal spatial coherence and temporal coherence and the effects associated with them are discussed in detail particularly when high numerical apertures are used. An important conclusion of this study is that a high‐contrast, high‐resolution system for imaging of multilayered samples is the one that uses narrowband illumination and high‐NA objectives with an index‐matching fluid. Such a system, when combined with frequency‐domain operation, can reveal nearly real‐time three‐dimensional images, and is thus competitive with confocal microscopy.  相似文献   

16.
The interference pattern produced by irradiation of a pair of pinholes with a beam contains information on both the spatial and the temporal coherence properties of the beam, as well as its power spectrum. We demonstrate experimentally for what is believed to be the first time that the spectrum of an extreme-ultraviolet (EUV) beam can be obtained from a measurement of the interference pattern produced by a pinhole pair. This approach offers a convenient method of making absolute wavelength and relative spectral intensity calibrations in the EUV.  相似文献   

17.
Korotkova O  Wolf E 《Optics letters》2005,30(2):198-200
A generalization of the Stokes parameters of a random electromagnetic beam is introduced. Unlike the usual Stokes parameters, which depend on one spatial variable, the generalized Stokes parameters, depend on two spatial variables. They obey precise laws of propagation, both in free space and in any linear medium, whether deterministic or random. With the help of the generalized Stokes parameters, the changes in the ordinary Stokes parameters upon propagation can be determined. Numerical examples of such changes are presented. The generalized Stokes parameters contain information not only about the polarization properties of the beam but also about its coherence properties. We illustrate this fact by expressing the degree of coherence of the electromagnetic beam in terms of one of the generalized Stokes parameters.  相似文献   

18.
It has been shown that the temporal coherence of a non-mode-locked laser is periodic in 2L/c. It has also been demonstrated that the limitations imposed on the depth of field in holography by the laser coherence properties may easily be overcome by illuminating the object with multiple beams. In such a system each object beam should travel the same distance to the holographic plate as the reference beam, or a multiple of 2L farther. For large objects (which would have large depths of field) multiple beam illumination is necessary anyway, to ensure uniform illumination of the object. In fact the limiting factor with regard to the size of an object and the depth of field should be the laser's power and not its coherence length. An advantage in this method of overcoming conventional limitations is that there is no reduction in the laser's output power as is involved in some other methods of coherence length improvement.  相似文献   

19.
We report on a novel condenser for full-field transmission x-ray microscopes that use synchrotron radiation from an undulator source. The condenser produces a Koehler-like homogeneous intensity distribution in the sample plane and eliminates object illumination problems connected with the high degree of spatial coherence in an undulator beam. The optic consists of a large number of small linear diffraction gratings and is therefore relatively easy to manufacture. First imaging experiments with a prototype condenser were successfully performed with the Twinmic x-ray microscope at the Elettra synchrotron facility in Italy.  相似文献   

20.
 在无阶梯诱导空间非相干光束平滑技术中,用作前端的部分相干源是重要的组成部分。介绍了利用准分子激光进行的部分相干源实验,发现聚四氟乙烯是一种较理想的散射材料。研究了聚四氟乙烯散射源对光束的散射性能,给出了光束均匀性、空间相干性和能量转换效率等参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号