首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
硅胶色谱柱的亲水作用保留机理及其影响因素   总被引:1,自引:0,他引:1  
李瑞萍  袁琴  黄应平 《色谱》2014,32(7):675-681
亲水作用色谱(HILIC)是替代反相色谱(RPLC)分离强极性及亲水性化合物的另一色谱模式,其分离机理与RPLC有很大不同,具有和RPLC互补的选择性。在HILIC模式中,采用正相色谱(NPLC)中的极性固定相及含高浓度有机溶剂(通常为乙腈)的水溶液为流动相。硅胶是开发最早、研究最为深入及应用最为广泛的HILIC固定相,本文介绍了硅胶色谱柱的HILIC保留机理,详细概述了操作条件如硅胶柱类型、流动相组成及柱温对HILIC分离的影响,并对硅胶填料色谱柱的HILIC模式的发展方向与应用前景进行了展望。  相似文献   

2.
亲水作用色谱是一种新型的色谱分离模式.此类色谱模式集反相色谱的经济廉价与正相色谱的优点于一体,有效补充了反相色谱的不足.简单介绍实验室中合成的新型亲水色谱固定相.  相似文献   

3.
A novel form of reversed-phase liquid chromatography (RPLC) by the dynamically modified hydrophilic interaction monolithic column has been described in this paper. A porous poly(SPMA-co-PETA) monolith with strong cation-exchange (SCX) was prepared and the resulting monolith showed a typical hydrophilic interaction chromatography (HILIC) mechanism at higher organic solvent content (ACN% > 50%). The good selectivity for neutral, basic and acidic polar analytes was observed in the HILIC mode. In order to increase the hydrophobic interaction, the monolith with SCX was dynamically modified with a long-chain quaternary ammonium salt, cetyltrimethylammonium bromide (CTAB), which was added to the mobile phase. CTAB ions were adsorbed onto the surface of the SCX monolithic material, and the resulting hydrophobic layer was used as the stationary phase. Using the dynamically modified SCX monolithic column, neutral, basic and acidic hydrophobic analytes were well separated with the RPLC mode.  相似文献   

4.
成晓东  冯钰锜 《色谱》2015,33(9):917-921
利用巯基与乙烯基的"点击化学"反应合成了一种新型含多羟基的硅烷偶联剂,再将其与硅胶反应制得含多羟基的亲水固定相。经过元素分析表征证明多羟基官能团已成功键合到硅胶表面。采用一系列不同性质的标准物质考察了亲水色谱模式下固定相的溶质保留机理。由于固定相结构中既具有极性多羟基官能团,也有短的疏水碳链,因此固定相兼具疏水性与亲水性。将此固定相成功应用于亲水与反相色谱两种模式,并对比了两种模式下流速对柱效的影响。最后将固定相应用于烷基苯、水溶性维生素以及核苷的分离中,取得了较好的分离效果,证明了固定相良好的应用前景。  相似文献   

5.
In this study, the retention and selectivity of a mixture of basic polar drugs were investigated in hydrophilic interaction chromatographic conditions (HILIC) using nano-liquid chromatography (nano-LC). Six sympathomimetic drugs including ephedrine, norephedrine, synephrine, epinephrine, norepinephrine and norphenylephrine were separated by changing experimental parameters such as stationary phase, acetonitrile (ACN) content, buffer pH and concentration, column temperature. Four polar stationary phases (i.e. cyano-, diol-, aminopropyl-silica and Luna HILIC, a cross-linked diol phase) were selected and packed into fused silica capillary columns of 100 μm internal diameter (i.d.). Among the four stationary phases investigated a complete separation of the all studied compounds was achieved with aminopropyl silica and Luna HILIC stationary phases only. Best chromatographic results were obtained employing a mobile phase composed by ACN/water (92/8, v/v) containing 10 mM ammonium formate buffer pH 3. The influence of the capillary temperature on the resolution of the polar basic drugs was investigated in the range between 10 and 50 °C. Linear correlation of ln k vs. 1/T was observed for all the columns; ΔH° values were negative with Luna HILIC and positive with aminopropyl- and diol-silica stationary phases, demonstrating that different mechanisms were involved in the separation.To compare the chromatographic performance of the different columns, Van Deemter curves were also investigated.  相似文献   

6.
A novel zwitterionic hydrophilic porous monolithic stationary phase was prepared based on the thermal‐initiated copolymerization of N,N‐dimethyl‐N‐(3‐methacryl‐amidopropyl)‐N‐(3‐(sulfopropyl)ammonium betaine and ethylene glycol dimethacrylate. A typical hydrophilic separation mechanism was observed at a highly organic mobile phase (ACN >60%) on this optimized zwitterionic hydrophilic interaction chromatography (HILIC) monolithic stationary phase. Good permeability, stability, and column efficiency were observed on the final monolithic column. Additionally, a weak electrostatic interaction for charged analytes was confirmed in analysis of six benzoic acids by studying the influence of mobile phase pH and salt concentration on their retention behaviors on the obtained zwitterionic HILIC monolithic column. The optimized zwitterionic HILIC monolith exhibited good selectivity for a range of polar test analytes.  相似文献   

7.
8.
吕倩楠 《色谱》2017,35(9):927-933
亲水/反相混合模式色谱应用广泛,但pH使用范围有限,不利于碱性药物的分离。该工作利用巯基-烯基点击化学合成了单分散多孔的半胱氨酸改性乙烯基功能化聚甲基倍半硅氧烷(C-V-PMSQ)微球。元素分析表明半胱氨酸成功键合在微球表面。C-V-PMSQ微球为介孔结构,单分散性好且具有优良的化学稳定性。以几种常见的核苷和核酸碱基作为测试样品,考察其色谱保留行为,溶质的保留因子随流动相中水相含量的变化呈现典型的U型曲线,表明C-V-PMSQ固定相具有亲水/反相的双重保留特征。使用该固定相可以分离苯的同系物及一系列亲水性与疏水性化合物。另外在高碱性流动相条件下利用亲水和反相模式成功分离了中药苦参中的3种主要活性成分,表明它在分离碱性药物方面具有较大的优势。  相似文献   

9.
亲水作用色谱固定相及其在中药分离中的应用   总被引:4,自引:0,他引:4  
郭志谋  张秀莉  徐青  梁鑫淼 《色谱》2009,27(5):675-681
亲水作用色谱(HILIC)作为一种分离极性化合物的液相色谱模式,近年来越来越受到关注和重视。一方面是因为强极性化合物的分离问题引起了各个研究领域的重视,如药物分析、代谢组学、蛋白质组学等研究领域都不同程度地涉及强极性化合物的分离问题;另一方面是由于HILIC具有流动相组成简单、分离效率较高、与质谱兼容以及反压较低等优势。固定相是HILIC发展和应用的基础,本文主要从固定相分子结构的角度对HILIC固定相的结构特征、保留特性以及应用概况等进行了综述。对传统正相色谱固定相用于HILIC以及专门设计的HILIC固定相进行了介绍,评述了各自的优缺点和应用概况;对近年来HILIC固定相在中药分离中的应用进行了介绍;并对HILIC固定相的发展进行了展望。  相似文献   

10.
通过分步键合反应制备了一种咪唑基双阳离子型离子液体和十八烷基共同修饰的混合模式硅胶色谱固定相(Sil-C18-IL-C4); 采用元素分析和红外光谱对其进行了表征. 分别评价了该固定相在反相色谱模式(RPLC)、 亲水色谱模式(HILIC)和RPLC/HILIC混合色谱模式下的色谱分离性能, 并在HILIC模式下对6种碱基核苷类化合物进行分离, 考察了流动相中有机相体积分数和水相中甲酸铵浓度对分离效果的影响. 此外, 还考察了该固定相的分离重复性. 制备的Sil-C18-IL-C4固定相的元素分析结果表明, 氮元素含量为1.65%, 碳元素含量为11.16%, 氢元素含量为2.44%. 该固定相的红外光谱中, 2928和2856 cm?1处出现了—CH的不对称和对称伸缩振动峰, 1440 和660 cm?1处出现了咪唑环上C=C的伸缩振动峰和C=N的弯曲振动峰, 说明十八烷基和1,5-双(咪唑-1-基)戊烷均已接枝到硅胶表面. 色谱性能评价结果表明, Sil-C18-IL-C4固定相可表现出反相色谱模式和亲水色谱模式分离性能, 对6种碱基核苷类物质能够实现完全分离, 而且在一定的色谱条件下可以在单根色谱柱单次运行中实现RPLC/HILIC混合模式色谱分离, 对于处理复杂样品中的碱基核苷类化合物等亲水物质具有良好的应用潜能.  相似文献   

11.
Li Y  Li J  Chen T  Liu X  Zhang H 《Journal of chromatography. A》2011,1218(11):1503-1508
The mixed sulfated/methacryloyl polysaccharide derivative was prepared and successfully immobilized onto the surface of porous silica particles by polymerization. Polysaccharide derivative was calculated as 10.33% in the stationary phase prepared. The new stationary phase (PMSP) showed both hydrophilic interaction (HILIC) and per aqueous liquid chromatography (PALC) characteristics. The effects of column temperature, the water content, pH and ion strength of mobile phase on the retention time of test compounds in highly aqueous eluents were investigated to evaluate the PALC features of PMSP. The column efficiency is about 31,000 plates/m for benzoic acid in water/ACN (97/3, v/v) mobile phase at a flow rate of 1.0 mL/min. Compared with C18 column, the PMSP had shorter retention time for weak polar and non-polar compounds, but also showed stronger retention for strong polar compounds. It indicated that PALC was a suitable mode of chromatography as replacement of HILIC and complementarity of reversed-phase liquid chromatography (RPLC).  相似文献   

12.
In this work, a poly-l-lysine-grafted stationary phase was synthesized by polymerization of N-carboxyanhydride of l-lysine initiated by 3-aminopropylated silica. The resulting material was characterized by FT-IR spectra, elemental analysis and thermogravimetric analysis, which clearly indicated that the new phase had been prepared successfully. The retention of polar solutes depending on acetonitrile content in mobile phase exhibited ??U-shaped?? curves, which was an indication of hydrophilic interaction liquid chromatography (HILIC)/reversed-phase liquid chromatography (RPLC) mixed-mode retention behavior. The retention mechanisms in HILIC and RPLC modes also were investigated. Phenol compounds, aniline compounds and hydrophilic compounds were separated in RPLC or HILIC mode on the new stationary phase, respectively. This result shows that the new phase could be used for both RPLC and HILIC applications, providing greater flexibility for real sample analysis.  相似文献   

13.
Guo Y  Yuan Q  Li R  Huang Y 《色谱》2012,30(3):232-238
亲水作用色谱(HILIC)是一种分离极性和亲水性化合物的液相色谱模式,其作为反相液相色谱(RPLC)的重要补充,近年来越来越受到各个领域的关注和重视。这不只是因为强极性化合物的分离问题在各个领域引起了重视,而且因为与RPLC比较,HILIC具有流动相组成黏度低、色谱柱渗透性好、与质谱联用的灵敏度高及反压较低等优势。本文简要概述了HILIC的发展历程、特点及保留机理,重点介绍了HILIC用于环境分析的最新进展,评述了HILIC及RPLC用于污染物分析的优缺点,并指出了HILIC用于环境分析的未来发展趋势。  相似文献   

14.
During recent decades, hydrophilic interaction liquid chromatography (HILIC) ahs been introduced to fractionate or purify especially polar solutes such as peptides and proteins while reversed‐phase liquid chromatography (RPLC) is also a common strategy. RPLC is also a common dimension in multidimensional chromatography. In this study, the potential of HILIC vs RPLC chromatography was compared for proteome mapping of human peripheral blood mononuclear cell extract. In HILIC a silica‐based stationary phase and for RPLC a C18 column were applied. Then separated proteins were eluted to an ion trap mass spectrometry system. Our results showed that the HILIC leads to more proteins being identified in comparison to RPLC. Among the total 181 identified proteins, 56 and 38 proteins were fractionated specifically by HILIC and RPLC, respectively. In order to demonstrate this, the physicochemical properties of identified proteins such as polarity and hydrophobicity were considered. This analysis indicated that polarity may play a major role in the HILIC separation of proteins vs RPLC. Using gene ontology enrichment analysis, it was also observed that differences in physicochemical properties conform to the cellular compartment and biological features. Finally, this study highlighted the potential of HILIC and the great orthogonality of RPLC in gel‐free proteomic studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
徐雪峰  沈爱金  郭志谋  梁鑫淼 《色谱》2013,31(3):185-190
基于巯基硅胶与单取代-6A-烯丙氨基-β-环糊精的巯基-烯点击化学反应,制备了β-环糊精(Click TE-CD)共价键合固定相。元素分析结果表明β-环糊精被成功键合到硅胶表面。以黄酮苷类化合物为模型,考察了Click TE-CD固定相在亲水、反相和超临界流体色谱等分离模式下的色谱保留行为。黄酮苷类化合物保留时间随流动相中乙腈含量的变化呈现典型的U型曲线,表明Click TE-CD固定相具有亲水/反相的双重保留特性。应用几何学方法测得Click TE-CD固定相在反相/亲水、亲水/超临界、反相/超临界混合模式下的正交性分别为69.8%、50.8%、50.8%。对比复杂中药样品降香提取物在反相、亲水、超临界等模式下的分离情况,结果表明Click TE-CD固定相在分离中药复杂样品方面具有极大潜力,可以在一根色谱柱上通过分离模式的改变,实现二维液相色谱的分离。Click TE-CD固定相不同分离模式的分离性能和较好的正交性表明该固定相具有在液相色谱方法发展和二维液相色谱分离方面应用的潜力。  相似文献   

16.
Retention prediction models for reversed-phase liquid chromatography (RPLC) have been extensively studied owing to the fact that RPLC remains the most widely used chromatographic technique especially in the field of pharmaceutical and biomedical analyses. However, RPLC is not always the method of choice for the analysis of some compounds that have high polarity. Hydrophilic interaction chromatography (HILIC) has been gaining interest in the last few years as an alternative option to RPLC for the analysis of polar and hydrophilic analytes. HILIC is a variant of normal-phase liquid chromatography, but utilizes water in a water-miscible organic solvent as the eluent in conjunction with a hydrophilic stationary phase. The present review aims to summarize recent contributions on the development of retention prediction models for a group of basic analytes, namely, the adrenoreceptor agonists and antagonists, on different polar stationary phases. The use of multiple linear regression and artificial neural networks in model building is highlighted.  相似文献   

17.
In order to assess the effect of silica gel structure on retention in hydrophilic interaction chromatography, a test system was developed which used quaternary ammonium ions as probes with tetramethylammonium acetate (TMAA) as the counter-ion competing against the interaction of the test probes with ionised silanols in the stationary phase. Four silica gel columns and a silica hydride column were examined. Retention times were obtained for the test probes at 20, 40, 60, 80 and 90 % acetonitrile (ACN) with all the mobile phase mixtures containing 10-mM TMAA buffer at pH 6.0. All phases gave “U”-shaped plots for log k against percentage of ACN with the steepest rise in retention occurring between 80 and 90 % ACN. Benzyltrimethylammonium, the smallest quaternary ammonium ion, was the most strongly retained probe at 90 % ACN and was most retained on a high surface area 60 Å Kromasil column and least retained on a 300 Å ACE silica gel column. The ionic strength of the mobile phase was varied at 80 and 90 % ACN and plots of log k against the inverse of buffer strength followed by fitting of second-order polynomial curves allowed an assessment of the contribution from HILIC to the mixed HILIC/ion-exchange retention mechanism. Toluene and pentylbenzene were used to assess the decrease in accessible pore volume due to water absorption in HILIC mode.  相似文献   

18.
成晓东  张铮 《应用化学》2019,36(6):726-732
利用异氰酸丙基三乙氧基硅烷与L-异亮氨酸反应合成了一种新型的硅烷偶联剂,并进一步将其与硅胶反应制得键合有L-异亮氨酸的亲水色谱固定相。 通过核磁共振氢谱表明亮氨酸功能化硅烷偶联剂的成功合成、元素分析表征证明亮氨酸已成功键合到硅胶表面。 将其作为亲水模式下的固定相填料填装在150 mm×4.6 mm不锈钢色谱柱中,以一系列经典的极性小分子作为探针,考察了这些探针分子在固定相上的色谱行为。 极性化合物的保留时间随着流动相中有机溶剂含量提高而逐渐增大,表现出典型的亲水保留特征。 进一步研究了流动相中乙腈含量、缓冲盐pH值及缓冲盐浓度等因素对分析物在固定相上的保留的影响。 在优化了相关参数后,将固定相应用于碱性化合物、水溶性维生素以及核苷类极性物质的分离当中。 在等度洗脱下,5种碱性化合物、6种水溶性维生素和8种核苷类物质分别在8、18及25 min内被成功分离。 分离结果表明了合成的L-异亮氨酸键合亲水色谱固定相具有较好的色谱性能,在极性化合物的分离上具有良好的应用前景。  相似文献   

19.
Chromatographic effects of dedicated stationary and mobile phase variations in hydrophilic interaction chromatography (HILIC) were investigated using a set of nucleobases, nucleosides and deoxynucleosides as polar test solutes. Retention and selectivity profiles were comparatively mapped on four in-house developed silica materials modified with short alkyl chains (C4, C5) which carry hydroxyl functionalities (including diol motifs) as well as embedded sulphide or sulphoxide groups. These data were complemented by results obtained with two commercially available diol-type phases and a bare silica column. Besides elucidation of packing-related aspects this work concentrated specifically on extending aqueous HILIC (AQ-HILIC) to nonaqueous polar-organic elution conditions herein termed NA-HILIC. The exchange of the polar modifier water by various alcohols in ACN-rich mobile phases containing 5 mM ammonium acetate decreased the eluotropic strength of the resulting eluents. The gain in retention largely followed the order ethanol (EtOH)>methanol (MeOH)>1,2-ethanediol (Et(OH)2) and was accompanied by distinct effects on chromatographic selectivity. For example, on the most polar home-made packing the purine nucleoside selectivity guanosine/adenosine increased from 2.25 in the AQ-HILIC (kguanosine=8.3) to 7.33 (kguanosine=59) in the NA-HILIC mode when EtOH was employed as NA modifier while this value was 5.84 and 2.93 with MeOH and Et(OH)2, respectively (eluent: 5 mM ammonium acetate in ACN/modifier 90:10 v/v). Besides the type of protic modifier its percentage as well the retention and selectivity effects upon varying the ammonium acetate concentration and column temperature, respectively, were also investigated. Notable inter-column differences were found for all of these elution parameters. A mixed-mode retention model composed of partitioning and adsorption is proposed for both AQ- and NA-HILIC retention processes. The potential of (i) the implementation of novel polar bondings (such as ones containing sulphoxide functionalities) and (ii) the comprehensive exploitation of elution variables (type of protic modifiers, salt, etc.) for providing new selectivity increments to the separation of polar analytes in HILIC is emphasised.  相似文献   

20.
The goal of this study was to compare the performance of three separation techniques for the analysis of 57 hydrophilic compounds. RPLC, hydrophilic interaction liquid chromatography (HILIC) and subcritical fluid chromatography (SFC) were tested. The comparison was based on the retention, selectivity, peak shape (asymmetry and peak width) and MS sensitivity. As expected, RPLC had some obvious limitations for such classes of compounds, and on average the %ACN required to elute these hydrophilic substances was 4, 7, and 11% ACN at pH 3, 6, and 9, respectively. However, a hybrid polar‐embedded C18 phase with an appropriate mobile phase could represent a viable strategy for hydrophilic basic compounds with log D greater than –2 on average. HILIC and SFC were found to be more appropriate for analyzing a large majority of these hydrophilic analytes (~60 and 70% of compounds eluted during the gradient in HILIC and SFC), while maintaining good MS sensitivity. Finally, this work demonstrated the complementarity of the three analytical techniques and showed that the selection of a suitable strategy should mostly be based on physicochemical properties of the analytes (pKa, log D, H‐bonding capability, etc.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号