首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Profiling and imaging of tissues by imaging ion mobility-mass spectrometry   总被引:1,自引:0,他引:1  
Molecular profiling and imaging mass spectrometry (IMS) of tissues can often result in complex spectra that are difficult to interpret without additional information about specific signals. This report describes increasing data dimensionality in IMS by combining two-dimensional separations at each spatial location on the basis of imaging ion mobility-mass spectrometry (IM-MS). Analyte ions are separated on the basis of both ion-neutral collision cross section and m/z, which provides rapid separation of isobaric, but structurally distinct ions. The advantages of imaging using ion mobility prior to MS analysis are demonstrated for profiling of human glioma and selective lipid imaging from rat brain.  相似文献   

2.
徐福兴  王亮  罗婵  丁传凡 《分析化学》2011,(10):1501-1505
本研究设计了一种新型用于二次离子质谱的一次离子源及其离子光学系统.通过此一次离子源,大气压下产生的一次离子可以被加速、聚焦并传输到位于真空条件下的样品表面并电离样品得到可供质谱仪分析的二次离子.通过理论模拟结合实验系统研究了此一次离子源的主要组成部分——离子光学系统的原理、结构和性能.以电喷雾电离源为例,成功地将大气压...  相似文献   

3.
Time-of-flight (TOF) systems are one of the most widely used mass analyzers in native mass spectrometry (nMS) for the analysis of non-covalent multiply charged bio-macromolecular assemblies (MMAs). Typically, microchannel plates (MCPs) are employed for high mass native ion detection in TOF MS. MCPs are well known for their reduced detection efficiency when impinged by large slow moving ions. Here, a position- and time-sensitive Timepix (TPX) detector has been added to the back of a dual MCP stack to study the key factors that affect MCP performance for MMA ions generated by nMS. The footprint size of the secondary electron cloud generated by the MCP on the TPX for each individual ion event is analyzed as a measure of MCP performance at each mass-to-charge (m/z) value and resulted in a Poisson distribution. This allowed us to investigate the dependency of ion mass, ion charge, ion velocity, acceleration voltage, and MCP bias voltage on MCP response in the high mass low velocity regime. The study of measurement ranges; ion mass = 195 to 802,000 Da, ion velocity = 8.4 to 67.4 km/s, and ion charge = 1+ to 72+, extended the previously examined mass range and characterized MCP performance for multiply charged species. We derived a MCP performance equation based on two independent ion properties, ion mass and charge, from these results, which enables rapid MCP tuning for single MMA ion detection.  相似文献   

4.
A novel mass spectrometer with the capability of ion manipulation and enrichment was developed to perform gas‐phase ion/ion reactions followed by product ions accumulation. The development of this apparatus opens opportunities for more complex sequences of ion manipulations, thus offers the potential on extensive application involving ion/ion reaction. Here, cleavage of disulfide bond in peptide was demonstrated based upon this ion manipulation and enrichment mass spectrometer. Two typical peptides including S‐glutathionylated ARACAKA with an intermolecular disulfide bond, and oxytocin with an intramolecular disulfide bond were chosen as typical samples to demonstrate the ability of the apparatus. After ion/ion reaction between selected peptide cations and periodate ions (IO4?), two kinds of product ions (eg, [M + O + H]+ and [M + H + Na + IO4]+) were enriched with a number of accumulation events. Afterwards, the enriched ions were subjected to activation, and the disulfide bond cleavage was clearly observed from the tandem mass spectra. These results illustrate the potential of this apparatus for ion manipulation performing ion/ion reaction, and low abundance product ion enrichment.  相似文献   

5.
Designs of a quadrupole ion trap (QIT) as a source for time‐of‐flight (TOF) mass spectrometry are evaluated for mass resolution, ion trapping, and laser activation of trapped ions. Comparisons are made with the standard hyperbolic electrode ion trap geometry for TOF mass analysis in both linear and reflectron modes. A parallel‐plate design for the QIT is found to give significantly improved TOF mass spectrometer performance. Effects of ion temperature, trapped ion cloud size, mass, and extraction field on mass resolution are investigated in detail by simulation of the TOF peak profiles. Mass resolution (mm) values of several thousand are predicted even at room temperature with moderate extraction fields for the optimized design. The optimized design also allows larger radial ion collection size compared with the hyperbolic ion trap, without compromising the mass resolution. The proposed design of the QIT also improves the ion–laser interaction volume and photon collection efficiency for fluorescence measurements on trapped ions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) using liquid metal ion guns (LMIGs) is now sensitive enough to produce molecular-ion images directly from biological tissue samples. Primary cluster ions strike a spot on the sample to produce a mass spectrum. An image of this sample is achieved by rastering the irradiated point over the sample surface. The use of secondary ion mass spectrometry for mapping biological tissue surfaces provides unique analytical capabilities; in particular, it enables in a single acquisition a large variety of biological compounds to be localised on a micrometer scale and scrutinised for colocalisations. Without any treatment of the sample, this method is fully compatible with subsequent and complementary analyses like fluorescence microscopy, histochemical staining, or even matrix-assisted laser desorption/ionisation imaging. Basic physical concepts, required instrumentation (ion source and mass analyzer), sample preparation methods, image acquisition, image processing, and emerging biological applications will be described and discussed.  相似文献   

7.
The gas-phase ion chemistry of propyne-phosphine and silane-propyne-phosphine mixtures was studied by ion trap mass spectrometry. For the binary mixture, the effect of different partial pressures of the reagents on the yield of C and P-containing ions was evaluated. Reaction sequences and rate constants were determined and reaction efficiencies were calculated from comparison of experimental and collisional rate constants. In the ternary silane-propyne-phosphine systems, the reaction pathways leading to formation of Si(m)C(n)P(p)H(q) (+) ions were determined and the rate constants of the most important steps were measured. For some ion species, selected by double isolation procedures (MS/MS), the low ion abundances prevented determination of the reaction rate constants. Si, C and P-containing ions are mainly produced in reactions of Si(m)P(p)H(q) (+) ions with propyne, while the reactivity of the Si(m)C(n)H(q) (+) ions towards PH(3) and of the C(n)P(p)H(q) (+) ions towards SiH(4) is very low. The formation of hydrogenated Si--C--P ions is interesting for their possible role as precursors of amorphous silicon carbides doped with phosphorus, obtained in a single step, by deposition from properly activated silane-propyne-phosphine mixtures.  相似文献   

8.
Current miniature mass spectrometers mainly focus on the analyses of organic and small biological molecules. In this study, we explored the possibility of developing high resolution miniature ion trap mass spectrometers for whole protein analysis. Theoretical derivation, GPU assisted ion trajectory simulation, and initial experiments on home‐developed “brick” mass spectrometer were carried out. Results show that ion‐neutral collisions have smaller damping effect on large protein ions, and a higher buffer gas pressure should be applied during ion trap operations for protein ions. As a result, higher pressure ion trap operation not only benefits instrument miniaturization, but also improves mass resolution of protein ions. Dynamic mass scan rate and generation of low charge state protein ions are also found to be helpful in terms of improving mass resolutions. Theory and conclusions found in this work are also applicable in the development of benchtop mass spectrometers.  相似文献   

9.
Propene-phosphine and the silane-propene-phosphine gaseous mixtures were studied by ion trap mass spectrometry. For the binary mixture the variation of ion abundances under different partial pressures and the mechanisms of ion-molecule reactions are reported. Moreover, the rate constants of the main processes were measured and compared with the collisional rate constants to determine the reaction efficiencies. In the ternary silane-propene-phosphine mixture the mechanisms of formation of Si(m)C(n)P(p)H(+)(s) ion clusters were elucidated, but the complexity of the system and the low abundances of the ions usually isolated by successive steps prevented the determination of rate constants. The hydrogenated ternary ions are mainly formed by reactions of Si(r)P(s)H(+)(t) ions with propene, whereas a minor contribution comes from reactions of Si(m)C(n)H(+)(p) ions with phosphine. The C(v)P(w)H(+)(z) ions show very low reactivity with silane. The formation processes of these species are discussed in relation to their possible role as precursors of amorphous silicon carbides doped with phosphorus obtained by deposition from properly activated silane-propene-phosphine mixtures.  相似文献   

10.
Ion mobility-mass spectrometry   总被引:3,自引:0,他引:3  
This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided.  相似文献   

11.
Electron ionisation mass spectrometry was usefully used to characterize structurally 2-aryl-5-acetylthiazole derivatives in the gas phase. The compounds show characteristic fragmentation pathways depending on the chemical nature of the substituent at position 2, consisting mainly in the cleavage of both the 1,2- and 3,4-bonds of the thiazole ring. Liquid secondary ion mass spectrometry was applied to study the effects of protonation on the gas-phase unimolecular reactions of this class of compound. Tandem mass spectrometric experiments, carried out on molecular and protonated molecular ions, and also on fragment ions produced in the source, allowed the elucidation of gas-phase decompositions of low-internal energy ions.  相似文献   

12.
The gas-phase ion chemistry of allene-phosphine and silane-allene-phosphine mixtures was studied by ion trap mass spectrometry. Rate constants of the main processes were measured and compared with the collisional rate constants to determine the reaction efficiencies. For the binary mixture, the highest yield of C- and P-containing ions is obtained with a 1 : 1 partial pressure ratio among the reagents. In the ternary mixture, formation of ion species containing Si, C and P together is mainly achieved in reactions of Si/P ions with allene, with a lower contribution from reactions of Si/C and C/P ions with phosphine and silane, respectively. The formation of ternary ion clusters is related to their possible role as precursors of amorphous silicon carbides doped with phosphorus, obtained by deposition from properly activated silane-allene-phosphine mixtures.  相似文献   

13.
Styrene-butadiene copolymers were analyzed by static secondary ion mass spectrometry (S-SIMS) and laser ablation Fourier transform ion cyclotron resonance mass spectrometry (LA-FTICRMS) to obtain quantitative information based on specific ions. Silver deposition was performed on polystyrene, butadiene rubber and styrene-butadiene rubber. Under these experimental conditions, new secondary ions were detected, in particular silver-cationized butadiene [M(butadiene) - Ag](+) and styrene [M(styrene) - Ag](+) monomers. In contrast, LA-FTICRMS experiments did not require pretreatment. At high laser power density, UV photons (193, 266 and 355 nm) allowed the detection of styrene and butadiene monomers at m/z 104 and 54, respectively. The use of the observed ions by SIMS or LA-FTICRMS ensures that quantitative information on the relative distribution of each monomer is obtained. However, the silver coating thickness in the SIMS experiment seems to have an important influence on the quantitative information obtained. For LA-FTICRMS experiments, the best results are obtained at a wavelength of 355 nm.  相似文献   

14.
采用电喷雾-离子阱质谱(ESI-IT MS),获取大黄酸分子的一级质谱和多级质谱碰撞诱导解离下的碎片离子,以量子化学计算大黄酸分子及其主要碎片离子的质谱行为。通过对质谱离子几何参数、键断裂能、电荷变化、自旋密度以及前线分子轨道的分析,可得到m/z 282.8、256.9、238.9、210.8、192.8、182.8、166.8离子的稳定构型以及质谱裂解途径,从而较系统地解释了大黄酸分子在ESI-IT MS中的裂解行为。  相似文献   

15.
The gas-phase ion chemistry of silane-allene-ammonia, germane-allene (or propyne)-ammonia (or phosphine) systems was studied by ion trap mass spectrometry. Reaction sequences were determined and rate constants were measured for the main processes observed. The mixture containing silane displays higher reactivity with respect to that with germane. Comparison with analogous systems provides useful information about the reactivity of different hydrocarbon molecules and the different affinities of silicon and germanium towards nitrogen and phosphorus. The most interesting product ions observed are those containing Si (or Ge), C and N (or P) elements together, as these ion species may be considered precursors of doped amorphous carbides, which are widely used in semiconductor devices.  相似文献   

16.
IntroductionPhosphorylation often acts as a molecular switchcontrolling the protein activity in different pathways asin metabolism,signal transduction,cell division,andso on.Therefore,N-phosphoryl amino acids play aspecial and important role in biological…  相似文献   

17.
借助质量分析离子动能谱和串联质谱研究了由电子轰击产生的双电荷离子的单分子亚稳碎裂及碰撞诱导分解过程,讨论了两种实验方法导致的差别因素.此外,根据质量分析离子动能谱提供的双电荷离子电荷分离反应的动能释放值计算了两电荷中心间距的最小值,以判别按不同电荷分离方式碎裂的双电荷离子的过渡态结构.  相似文献   

18.
A mass spectral study of a series of new Boc-C-linked carbo-beta(3)-peptides prepared from C-linked carbo-beta(3)-amino acids (Caa) was carried out using liquid secondary ion mass spectrometry (LSIMS), electrospray ionization (ESI) and tandem mass spectrometry. Using the nomenclature of Roepstorff and Fohlman, the positive ion high- and low energy collision-induced dissociation (CID) of [M + H - Boc + H](+) ions of the peptides produce both N- and C-terminus ions, y(n) (+) and b(n) (+) ions, with high abundance and other ions of low abundance. Further, characteristic fragment ions of carbohydrate moiety are observed. In contrast to the CID of protonated peptide acids, the CID of [M - H](-) ions of the beta(3)-peptide acids do not give b(n)(-) ions and show abundant z(n)(-) and c(n) (-) ions which are insignificant in the former. Two pairs of positionally isomeric Boc-carbo-beta(3)-dipeptides were differentiated by the CID of [M + H](+) ions in LSIMS and ESIMS. The fragment ion [M + H - C(CH(3))(3) + H](+) formed from [M + H](+) by the loss of 2-methylprop-2-ene is relatively more abundant in the dipeptide Boc-NH-beta-hGly-Caa(S)-OCH(3) (14) containing the sugar moiety at the C-terminus whereas it is insignificant in Boc-NH-Caa(S)-beta-hGly-OCH(3) (13), which has the sugar moiety at the N-terminus. Similarly, two pairs of diastereomeric dipeptides were distinguished by the high- and low-energy CID of [M + H](+) ions. The loss of 2-methylprop-2-ene is more pronounced for Boc-NH-Caa(R)-beta-hGly-OCH(3) (17) and Boc-NH-Caa(R)-Caa(S)-OCH(3) (18) isomers whereas it is insignificant for Boc-NH-Caa(S)-beta-hGly-OCH(3) (13) and Boc-NH-Caa(S)-Caa(S)-OCH(3) (2) isomers. This was attributed to a favorable configuration of the carbohydrate moiety favoring the 'H' migration involved in the loss of 2-methylprop-2-ene from the [M + H](+) ions of isomers 17 and 18 compared with the unfavorable configuration of the carbohydrate moiety in isomers 13 and 2.  相似文献   

19.
A multiply charged molecule expands the range of a mass window and is utilized as a precursor to provide rich sequence coverage; however, reflectron time-of-flight mass spectrometer has not been well applied to the product ion analysis of multiply charged precursor ions. Here, we demonstrate that the range of the mass-to-charge ratio of measurable product ions is limited in the cases of multiply charged precursor ions. We choose C6F6 as a model molecule to investigate the reactions of multiply charged molecular cations formed in intense femtosecond laser fields. Measurements of the time-of-flight spectrum of C6F6 by changing the potential applied to the reflectron, combined with simulation of the ion trajectory, can identify the species detected behind the reflectron as the neutral species and/or ions formed by the collisional charge transfer. Moreover, the metastable ion dissociations of doubly and triply charged C6F6 are identified. The detection of product ions in this manner can diminish interference by the precursor ion. Moreover, it does not need precursor ion separation before product ion analysis. These advantages would expand the capability of mass spectrometry to obtain information about metastable ion dissociation of multiply charged species.  相似文献   

20.
Germane-propane and germane-propene gaseous mixtures were studied by ion trap mass spectrometry. Variations of ion abundances observed under different partial pressure ratios and mechanisms of ion-molecule reactions elucidated by multiple isolation steps are reported. In addition, the rate constants for the main reactions were experimentally determined and compared with the collisional rate constants to obtain the reaction efficiencies. The yield of ions containing both Ge and C atoms is higher in the germane-propene than in the germane-propane system. In the former mixture, chain propagation takes place starting from germane ions reacting with propene and proceeds with the formation of clusters such as Ge(2)C(4)H(n) (+) and Ge(3)CH(n) (+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号