首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Current Applied Physics》2014,14(3):355-358
We present the oxygen ion drift-based resistive switching features of TiOx/TiOy bi-layer homo-junctions. The TiOx layer in this bi-layer configuration was designed to have a stoichiometric chemical composition of TiO2, while the TiOy layer was designed to have a non-stoichiometric chemical composition. X-ray photoelectron spectroscopy measurements were carried out before and after electro-forming to determine the role of non-lattice oxygen content. Variation of the oxygen ion content in the TiO2 layers resulted in changes in the on/off ratio and increased the non-lattice oxygen content. A possible switching mechanism based on oxygen ion content is discussed.  相似文献   

2.
We have investigated the role of amorphous titanium oxide film in the reliable bipolar resistive switching of Al/TiO2/Al resistive random access memory devices. As TiO2 deposition temperature decreased, a more stable endurance characteristic was obtained. We proposed that the degradation of the bipolar resistive switching property of Al/TiO2/Al devices is closely related to the imperfect migration of oxygen ions between the top insulating interface layer and the oxygen-deficient titanium oxide during the set and reset operations. In addition, the dependence of the TiO2 film thickness on the switching property was also studied. As the thickness of the film increased, a reduction in the resistance of the high resistance state rapidly appeared. We attribute the improved endurance performance of thin and low-temperature grown TiO2 devices to the amorphous state with a low film density.  相似文献   

3.
Nanocrystalline TiO2 thin films were fabricated on Pt(111)/Ti/SiO2/Si substrates by the thermal oxidation of evaporated Ti films. Effects of the compliance current on the resistive switching behavior of the Pt/TiO2/Pt sandwich structures were studied in detail. The reset current increased when the compliance current increased from 10 mA to 20 mA. When the compliance current exceeded 20 mA, the switching behavior disappeared, which could be attributed to the change of the conducting behavior in the low-resistance state. A resistance change ratio of as high as 102 was obtained between the high-resistance state and the low-resistance state. The study of the effect of compliance current contributes to obtaining stable and reliable resistive switching behavior for nonvolatile memory applications.  相似文献   

4.
Platinum–aluminum (Pt–Al) alloy top electrode on the retention improvement of gadolinium oxide (Gd x O y ) resistive switching memory was investigated. The aluminum oxide (Al x O y ) formation at the Pt–Al alloy top electrode and Gd x O y interface will lead to the high Schottky barrier height. Further, the more aluminum incorporation can suppress the crystallization of platinum electrode after the post-metallization annealing. Both the crystallization suppression of Pt top electrode and the interfacial aluminum oxide formation will prevent the oxygen ions from out-diffusion through Pt grain boundaries, responsible for the retention enhancement of the Gd x O y resistive switching memory.  相似文献   

5.
《Current Applied Physics》2018,18(9):953-960
We fabricated the GaIn/TiO2-CuO/ITO resistive memory and studied the effect of fatigue fracture on the switching performance. The device shows the stable bipolar resistive switching over 108 s under ambient condition. The ON/OFF ratio decreases seriously with increase of bending cycles. The main fatigue fracture caused by dynamic strain includes micro defect between nanoparticles, vertical crack along the film thickness and interfacial delamination between layers. Finite element analysis indicates that channel crack plays a key role to cause the interfacial delamination between function layer and ITO electrode. The channel crack and interfacial delamination can hinder the formation of tree−like conduction filaments. Moreover, oxygen via the cracks can be easily transformed to ions and reduce the density of oxygen vacancies under the catalytic assistance of CuO. Our studies may provide some useful information for inorganic materials applied in flexible nonvolatile memory.  相似文献   

6.
《Current Applied Physics》2018,18(1):102-106
The present study reports the resistive switching behaviour in Titanium Dioxide (TiO2) material, with possible implementations in non volatile memory device. The Cu/TiO2/Pt memory device exhibit uniform and stable bipolar resistive switching behaviour. The current-voltage (I-V) analysis shows two discrete resistance states, the High Resistance State (HRS) and the Low Resistance State (LRS). The effect of an additional AlN layer in the resistive memory cell is also investigated. The Cu/TiO2/AlN/Pt device shows a multilevel (tri-state) resistive switching. Multilevel switching is facilitated by ionic and metallic filament formation, and the nature of the formed filaments is confirmed by performing a resistance vs. temperature measurement. The bilayer device shows improved reliability over the single layer device. The formation of high thermal conductive interfacial oxy-nitride (AlON) layer is the main reasons for the enhancement of resistive switching properties in Cu/TiO2/AlN/Pt cell. The performance of device was measured in terms of endurance and retention, which exhibits good endurance over 105 cycles and long retention time of 105 s at 125 °C. The above result suggests the feasibility of Cu/TiO2/AlN/Pt devices for multilevel non volatile ReRAM application.  相似文献   

7.
We have studied resistive bistability (memory) effects in junctions based on metal oxides, with a focus on sample-to-sample reproducibility, which is necessary for the use of such junctions as crosspoint devices of hybrid CMOS/nanoelectronic circuits. Few-nm-thick layers of NbO x , CuO x and TiO x have been formed by thermal and plasma oxidation, at various deposition and oxidation conditions, both with and without rapid thermal post-annealing. The resistive bistability effect has been observed for all these materials, with particularly high endurance (over 103 switching cycles) obtained for single-layer TiO2 junctions, and the best reproducibility reached for multi-layer junctions of the same material. Fabrication optimization has allowed us to improve the OFF/ON resistance ratio to about 103, but the sample-to-sample reproducibility is so far lower than that required for large-scale integration.  相似文献   

8.
A heterojunction structure of p-NiO/n-Mg0.6Zn0.4O with an aim to tuning or improving the resistive switching properties was fabricated on Pt/TiO2/SiO2/Si substrates by the sol-gel spin-coating technique. The Pt/NiO/Mg0.6Zn0.4O/Pt heterojunction thin-film device shows excellent resistive switching properties, such as a reduced threshold current of 1 μA for device initiation, a small dispersion of reset voltage ranging from 0.54 to 0.62 V, long retention time and a high resistance ratio of high-resistance state to low-resistance state about six orders of magnitude. These results indicate that the resistive switching properties can be greatly improved by constructing the p-NiO/n-Mg0.6Zn0.4O heterojunction for nonvolatile memory applications. The physical mechanism responsible for colossal resistive switching properties of the heterojunction was analyzed based on interfacial defect effect and formation and rapture of conductive filaments.  相似文献   

9.
The improvement of resistive switching (RS) phenomena of silicon‐nitride (SiNx)‐based resistive random access memory (ReRAM) cells through oxygen doping process was investigated. As a result, compared to un‐doped SiNx films, the oxygen doped SiNx (SiNx:O2)‐based ReRAM cells show a lower current (~0.3 μA) level at a high resistance state and a smaller variation of operating voltage through the reduction of leakage current in the SiNx:O2 film by combining silicon dangling bonds and doped oxygen ions. Therefore, we believe that the oxygen doping process in SiNx films can effectively improve the RS characteristics of SiNx‐based ReRAM cells. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The flexible Ag/TiO2/ITO/PET resistive switching memory is prepared by low-temperature sol-gel method with UV irradiation, and the simple method that combined the advantages of sol-gel method and low temperature can be applied to fabricate high-quality film. The flexible Ag/TiO2/ITO/PET memory device displays good resistive behavior, for instance, the narrow distributions of switching voltages, good cycle endurance, and long retention time. Meanwhile, the multilevel resistance states of the device can be realized by controlling the compliance current or reset voltages, showing the potential of applications in neural networks and high-density storge. In addition, flexibility of the Ag/TiO2/ITO/PET is studied, which exhibit good endurance and retention properties under bending condition. The I–V curves are replotted and fitted for analyzing the conductive mechanism of the device. The fitting results show that SCLC and Ohmic mechanism are main mechanisms of high resistance state and low resistance state respectively. The electrochemical and thermochemical modes are adopted to explain resistive switching behavior. Our results indicate the Ag/TiO2/ITO/PET memory has potential application in wearable and foldable electronics.  相似文献   

11.
The bipolar resistive switching mechanisms of a p-type NiO film and n-type TiO2 film were examined using local probe-based measurements. Scanning probe-based current–voltage (IV) sweeps and surface potential/current maps obtained after the application of dc bias suggested that resistive switching is caused mainly by the surface redox reactions involving oxygen ions at the tip/oxide interface. This explanation can be applied generally to both p-type and n-type conducting resistive switching films. The contribution of oxygen migration to resistive switching was also observed indirectly, but only in the cases where the tip was in (quasi-) Ohmic contact with the oxide.  相似文献   

12.
This study demonstrates quantum-dot light-emitting diodes (QD-LEDs) with a function of resistive switching memory, capable of on/off operation at the same driving current depending on reset/set state. The QD-LEDs were fabricated by spin-coating process and experienced two different annealing conditions, which yielded defective or less-defective V2O5–x layer. One of the annealing conditions produced QD-LEDs with the unusual electrical behaviors of negative differential resistance (NDR), capacitance oscillation, and voltage–current hysteresis curves, signifying so-called resistive switching characteristics. X-ray and ultraviolet photoelectron spectroscopies were used to examine the chemical state of the differently annealed V2O5–x layers. The less stoichiometric V2O5–x layer was found to be responsible for the resistive switching behaviors of the NDR and the low and high resistance states (LRS and HRS, respectively). We discuss the LRS/HRS of V2O5–x for resistive switching in terms of a conductive filament effect, induced by microstructural changes caused by oxygen drift and vacancy annihilation processes in the high defect density V2O5–x layer.  相似文献   

13.
《Current Applied Physics》2015,15(9):1005-1009
Forming-free and self-compliant bipolar resistive switching is observed in Cu/TaOx/TiN conductive bridge random access memory. Generally, Pt has been investigated as an inert electrode. However, Pt is not desirable material in current semiconductor industry for mass production. In this study, all electrodes are adapted to complementary metal-oxide-semiconductor compatible materials. The self-compliant resistive switching is achieved via usage of TiN bottom electrode. Also, dissolved Cu ions in TaOx lead to forming-free resistive switching behavior. The resistive switching mechanism is formation and rupture of combined oxygen vacancy/metallic copper conductive filament. We propose that Cu/TaOx/TiN is a promising candidate for a conductive bridge random access memory structure.  相似文献   

14.
《Current Applied Physics》2014,14(1):139-143
In this study, we report a resistive random access memory (RRAM) using trilayer SiOx/a-Si/TiOy film structure. The low switching energy of <10 pJ, highly uniform current distribution (<13% variation), fast 50-ns speed and stable cycling endurance for 106 cycles are simultaneously achieved in this RRAM device. Such good performance can be ascribed to the use of interface-engineered dielectric stack with 1D1R-like structure. The SiOx tunnel barrier in contact with top Ni electrode to form diode-like rectifying element not only lowers self-compliance switching currents, but also improves cycling endurance, which is favorable for the application of high-density 3D memory.  相似文献   

15.
We investigate the resistive switching behaviour of a tantalum oxide nanolayer‐based nonvolatile memory with Pt/TaO5–x/TaN structure, which was prepared at room temperature through a processing compatible with CMOS technology. The tantalum oxide nanolayer with thickness of about 5 nm was fabricated by plasma oxidation of TaN films. The switching mechanism can be explained by the modulation of the local oxygen‐deficient conduction channel resulting from oxygen ions drift. This Letter represents a cost‐efficient method for developing nanoscale restive switching nonvolatile memories. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
邢钟文 《中国物理 B》2011,20(9):97703-097703
The electric-pulse-induced resistive switching effect is studied for Ti0.85Cr0.15Ox (TCO) films grown on Ir—Si substrates by pulsed laser deposition. Such a TCO device exhibits bipolar switching behaviour with an electric-pulse-induced resistance ratio as large as about 1000% and threshold voltages smaller than 2 V. The resistive switching characteristics may be understood by resistance changes of a Schottky junction composed of a metal and an n-type semiconductor, and its nonvolatility is attributed to the movement of oxygen vacancies near the interface.  相似文献   

17.
Thin-film heterojunctions Nd2 − x Ce x CuO4 − y /Ag were obtained. The bipolar effect of resistive switching in these heterostructures was detected and investigated. X-ray diffraction data indicate the presence of a second phase in thin films; along with the basic phase Nd2 − x Ce x CuO4 − y , it affects the behavior of the interface of investigated heterojunctions and leads to an alteration of the type of conductivity. The threshold frequency of alternating voltage at which the resistive switching effect is observed in heterojunctions was detected.  相似文献   

18.
We report that fully transparent resistive random access memory(TRRAM) devices based on ITO/TiO2/ITO sandwich structure,which are prepared by the method of RF magnetron sputtering,exhibit excellent switching stability.In the visible region(400-800 nm in wavelength) the TRRAM device has a transmittance of more than 80%.The fabricated TRRAM device shows a bipolar resistance switching behaviour at low voltage,while the retention test and rewrite cycles of more than 300,000 indicate the enhancement of switching capability.The mechanism of resistance switching is further explained by the forming and rupture processes of the filament in the TiO 2 layer with the help of more oxygen vacancies which are provided by the transparent ITO electrodes.  相似文献   

19.
The I-V characteristics of In2O3:SnO2/TiO2/In2O3:SnO2 junctions with different interracial barriers are inves- tigated by comparing experiments. A two-step resistance switching process is found for samples with two interfacial barriers produced by specific thermal treatment on the interfaces. The nonsynchronous occurrence of conducting filament formation through the oxide bulk and the reduction in the interracial barrier due to the migration of oxygen vacancies under the electric field is supposed to explain the two-step resistive switching process. The unique switching properties of the device, based on interracial barrier engineering, could be exploited for novel applications in nonvolatile memory devices.  相似文献   

20.
Using nano-crystallized aluminum oxynitride (nc-AlOxNy) dielectric, the Al/nc-AlOxNy/AlN/n+-Si resistive random access memory (RRAM) with ultralow sub-micro watt power is reported in this study. The RRAM devices exhibit excellent memory characteristics, including reproducible bipolar resistive switching under >100 times memory window, very low set and reset current of ~10 nA, high voltage distributions and good data retention. It is demonstrated that the reset current decreases as the compliance current decreases, which provides an approach to lower the power consumption. The conduction mechanisms for high- and low-resistance states are dominated by Frenkel–Poole conduction and space-charge-limited current, respectively. These good memory characteristics in this RRAM show great potential in future high-performance memory applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号