首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
The effect of nanosecond excimer laser pulses on a composite layer of sodium-calcium silicate glass with silver nanoparticles has been investigated. Nanoparticles were synthesized by ion implantation. Based on measuring the optical absorption and reflection spectra of the composite layers, it is found that an increase in the number of laser pulses leads to a monotonic decrease in the size of silver nanoparticles. However, laser irradiation with a longer duration leads to the growth of nanoparticles with their subsequent destruction. The effects observed are discussed in terms of heating a glass composite layer as a result of the effective absorption of laser radiation.  相似文献   

2.
The action of KrF excimer laser radiation on the composite material consisting of the silica glass with copper nanoparticles is investigated as a function of the number of nanosecond laser pulses. Metal nanoparticles are synthesized by ion implantation. It is established using optical reflectance measurements of composite layers that, at the initial stage, the irradiation leads to the fragmentation of the largest nanoparticles. Then, after irradiation by several pulses, the particles become larger due to the heating of the glass. The laser treatment for a longer time (several tens and hundreds of pulses) results in the dissociation of nanoparticles into small clusters and individual atoms. The mechanisms responsible for the modification of the composite material under high-power laser radiation are discussed.  相似文献   

3.
Composite layers made in sapphire by implantation of 40-keV Cu+ ions at a dose of 1 × 1017 cm−2 and an ion beam current density varying from 2.5 to 10 μA/cm2 are studied. It is shown that ion implantation makes it possible to synthesize a composite layer containing copper nanoparticles at the surface of the insulator. However, the nanoparticle size distribution in this layer is nonuniform. The composite layer is exposed to high-power excimer laser radiation with the aim of modifying the size and size distribution of the metal nanoparticles in it. The resulting structures are examined by Rutherford backscattering, optical reflection spectroscopy, and atomic force microscopy. It is found that the laser irradiation diminishes copper nanoparticles in the composite layer. Experimental data on laser modification may be explained by photofragmentation and/or melting of the nanoparticles in the sapphire matrix under the action of nanosecond laser pulses.  相似文献   

4.
Nonlinear optical characteristics of copper and silver nanoparticles in glass host matrices are studied by the Z-scan method at the wavelength of a Nd:YAG laser (λ=1064 nm) in a field of picosecond pulses. It is found that the third-order nonlinear susceptibility is more pronounced in glasses with copper nanoparticles than in glasses with silver nanoparticles. On the basis of experimental data obtained for samples with copper nanoparticles synthesized by ion implantation, it is shown for the first time that the nonlinear absorption of laser radiation with a wavelength lying out of the plasmon resonance region can be caused by a two-photon effect in metal particles. The character of the optical limiting process in the samples with copper nanoparticles when two-photon absorption is involved is discussed.  相似文献   

5.
Sodium calcium silicate glasses with Ag+ implanted ions are studied. The ion implantation conditions are as follows: the energy is 60 keV, the dose is 7×1016 cm−2, and the ion current density is 10 μA/cm2. Ion implantation provides the formation of a composite layer that incorporates silver nanoparticles in the surface region of glass. The size distribution of nanoparticles over the depth in the composite layer is strongly nonuniform. The effect of a high-power pulsed excimer laser on the composite layer is investigated. It is found that, under laser irradiation, the size of silver nanoparticles in the implanted layer decreases but the size distribution of nanoparticles over the depth remains nonuniform, even though it becomes slightly narrower compared to that observed prior to irradiation. The experimental results are interpreted in terms of the effects of the melting of glass and metallic particles on a nanosecond scale. __________ Translated from Fizika Tverdogo Tela, Vol. 43, No. 11, 2001, pp. 2100–2106. Original Russian Text Copyright ? 2001 by Stepanov, Popok, Hole, Bukharaev.  相似文献   

6.
A novel method for direct laser writing of two-dimensional cadmium sulfide (CdS) semiconductor nanoparticle microstructures is reported. A two photon or a higher-order multiphoton absorption process, originating from femtosecond laser pulses, was used to decompose CdS precursors dispersed in a zirconia thin film previously dip-coated on a glass substrate. The kinetics of nanoparticle formation as a function of laser power were monitored in situ by photoluminescence spectroscopy. Raman spectroscopy was also performed to characterize the structural changes of the zirconia matrix under irradiation and to verify the formation of CdS nanoparticles. Results show that CdS nanoparticles were formed by two-photon absorption (TPA) with or without the help of an additional carbazole photoinitiator.  相似文献   

7.
The optical, structural, and nonlinear optical properties of silver nanoparticles prepared using the method of laser ablation in various liquids at wavelengths of 397, 532, and 795 nm with laser pulses of different duration are studied. An analysis of the dimensional and spectral characteristics of the silver nanoparticles revealed a time dynamics of the nanoparticle size distribution in solutions. It is shown that thermal self-defocusing is observed for the case of nanosecond or shorter pulses generated with a high repetition rate. For picosecond and femtosecond pulses with a low repetition rate, the effects of self-focusing (γ = 3 × 10?13 cm2 W?1) and saturated absorption (β = ?1.5 × 10?9 cm W?1) were observed in the solutions under study. The third-order nonlinear susceptibility of the silver nanoparticles was found to be 5 × 10?8 esu at a wavelength of 397 nm.  相似文献   

8.
Copper nanoparticles (Cu NPs) were prepared by different chemical methods possessing different sizes. While, silver nanoparticles (Ag NPs) were prepared by borohydride reduction method. The influences the changes in sizes of Ag NPs and Cu NPs were demonstrated by the absorption spectra. When Ag NPs and Cu NPs irradiated with 193 and 308 nm excimer laser, respectively; the maximum absorption decreased as the number of pulses increased up to 10 thousands pulse; due to the size reduction. The TEM photography gives good criteria about the size reduction process. Moreover, the mechanism of photofragmentation was described.  相似文献   

9.
A physical model of metal nanoparticle fragmentation in liquid media upon exposure to femtosecond laser pulses is proposed by the example of gold nanoparticle fragmentation in water. The model is based on electrolyzing the metal nanoparticles heated by laser pulses and their fragmentation during development of the instability of charged liquid metal drops. The nanoparticle charge gained upon exposure to laser radiation in water is estimated and the nanoparticle fragmentation parameter is determined.  相似文献   

10.
Experimental results on synthesis of metal nanoparticles in ORMOCER by ion implantation are presented. Silver ions were implanted into organic/inorganic matrix at an accelerating energy of 30?keV and doses in the range of 0.25?1017 to 0.75?1017?ion/cm2. The silver ions form metal nanoparticles, which demonstrate surface plasmon absorption at the wavelength of 425?C580?nm. The nonlinear absorption of new composite materials is measured by Z-scan technique using 150?fs laser pulses at 780?nm wavelength. ORMOCER matrix shows two-photon nonlinear absorption, whereas ORMOCER with silver nanoparticles demonstrates saturated absorption. Some optical applications of these composite materials are discussed.  相似文献   

11.
Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.  相似文献   

12.
We have investigated the nonlinear response of the silver nanoparticle samples in a low-power regime of electromagnetic field based on nonlocal thermo-optic models. In this work, the experimental investigation of the thermo-optic nonlinear response of Ag colloids containing different size of silver nanoparticles is reported. The colloidal nanoparticle samples were synthesized by nanosecond pulsed laser ablation of Ag bulk in acetone. The sample containing Ag was characterized by linear absorption spectroscopy and transmission electron microscopy. Using the z-scan technique, the behavior of thermal nonlinear refractive index of colloid was studied at different concentrations of silver nanoparticles. Observation of asymmetrical configurations of the z-scan data indicates that nonlinear refraction occurring in the Ag samples is related to the thermo-optical process. The optical limiting here is due to nonlinear refraction of the samples arising from thermal lens formation under low-power CW excitation. When the laser power is low, the self-defocusing effect is mainly dominated by surface plasmon resonance effect. Results show that with increasing concentration of nanoparticles in acetone, the nonlinear refractive index increases while the threshold power of optical limiting decreases.  相似文献   

13.
Absorption and reflection of electromagnetic radiation by a composite thin film consisting of a transparent dielectric matrix with inclusions of metal nanoparticles of radius much less than the wavelength were theoretically investigated based on the Maxwell–Garnett model. The absorption, reflection, and transmission of optical radiation in such a dielectric composite film were analyzed using effective optical parameters for the refractive index and absorption coefficient that depended on the nanoparticle size.  相似文献   

14.
It has been experimentally shown that water vapor thermal treatment of silicate glasses with silver ions introduced by ion exchange leads to the formation of a silver nanoparticle layer with a high packing density on the glass surface. The results of studying the morphology of samples by atomic force and electron microscopy and X-ray spectral analysis of the composition of nanoparticles, as well as the optical density and luminescence spectra in different stages of the treatment, are presented. Mechanisms explaining the processes responsible for silver nanoparticle formation upon water vapor thermal treatment on the glass surface after ion exchange are proposed.  相似文献   

15.
Laser energy absorption results in significant heating of metallic nanoparticles and controlling the heating of nanoparticles is one of the essential stages of selective cell targeting. It is necessary to note that the laser action should be done by laser pulses with a wavelength that is strongly absorbed by the particles and it is important to select wavelengths that are not absorbed by the medium. Laser pulse duration must be chosen sufficiently short to minimize heat flow emitted from absorbing particles. Numerical calculations based on Mie theory were used to obtain the effect of laser wavelength and particle size on absorption factor for colloidal silver nanoparticles with radii between 5 and 50 nm. Calculations for acquiring temperatures under irradiations of pulsed KrF laser and pulsed Nd:YAG laser were performed. We showed that for low wavelengths of the laser, smaller nanoparticles have larger absorption efficiency compared to larger nanoparticles and in high wavelengths, temperature of all particles increased in the same way.  相似文献   

16.
The influence of fundamental and second harmonic wavelength on ablation efficiency and nanoparticle properties is studied during picosecond laser ablation of silver, zinc, and magnesium in polymer-doped tetrahydrofuran. Laser ablation in stationary liquid involves simultaneously the fabrication of nanoparticles by ablation of the target material and fragmentation of dispersed nanoparticles by post irradiation. The ratio in which the laser pulse energy contributes to these processes depends on laser wavelength and colloidal properties. For plasmon absorbers (silver), using the second harmonic wavelength leads to a decrease of the nanoparticle productivity over process time along with exponential decrease in particle diameter, while using the fundamental wavelength results in a constant ablation rate and linear decrease in particle diameter. For colloids made of materials without plasmon absorption (zinc, magnesium), laser scattering is the colloidal property that limits nanoparticle productivity by Mie-scattering of dispersed nanoparticle clusters.  相似文献   

17.
We report the deposition of thin films of silver (Ag) nanoparticles by pulsed laser ablation in vacuum using the third line (355 nm) of a YAG:Nd laser. The nanostructure and/or morphology of the films was investigated as a function of the number of ablation pulses, by means of transmission electron microscopy and atomic force microscopy. Our results show that films deposited with a small number of ablation pulses (500 or less), are not continuous, but formed of isolated nearly spherical Ag nanoparticles with diameters in the range from 1 nm to 8 nm. The effect of increasing the number of pulses by one order of magnitude (5000) is to increase the mean diameter of the globular nanoparticles and also the Ag areal density. Further increase of the number of pulses, up to 10,000, produces the formation of larger and anisotropic nanoparticles, and for 15,000 pulses, quasi-percolated Ag films are obtained. The presence of Ag nanoparticles in the films was also evidenced from the appearance of a strong optical absorption band associated with surface plasmon resonance. This band was widened and its peak shifted from 425 nm to 700 nm as the number of laser pulses was increased from 500 to 15,000.  相似文献   

18.
In-situ functionalization of gold nanoparticles with fluorophore-tagged oligonucleotides is studied by comparing femtosecond laser ablation in stationary liquid and in biomolecule flow. Femtosecond laser pulses induce significant degradation to sensitive biomolecules when ablating gold in a stationary solution of oligonucleotides. Contrary, in-situ conjugation of nanoparticles in biomolecule flow considerably reduces the degree of degradation studied by gel electrophoresis and UV–Vis spectrometry. Ablating gold with 100 μJ femtosecond laser pulses DNA sequence does not degrade, while the degree of fluorophore tag degradation was 84% in stationary solution compared to 5% for 1 mL/min liquid flow. It is concluded that femtosecond laser-induced degradation of biomolecules is triggered by absorption of nanoparticle conjugates suspended in the colloid and not by ablation of the target. Quenching of nanoparticle size appears from 0.5 μM biomolecule concentration for 0.3 μg/s nanoparticle productivity indicating the successful surface functionalization. Finally, increasing the liquid flow rate from stationary to 450 mL/min enhances nanoparticle productivity from 0.2 μg/s to 1.5 μg/s, as increasing liquid flow allows removal of light absorbing nanoparticles from the ablation zone, avoiding attenuation of subsequent laser photons.  相似文献   

19.
We have studied processes of interaction of pulsed laser radiation with resonant groups of plasmonic nanoparticles(resonant domains) in large colloidal nanoparticle aggregates having different interparticle gaps and particle size distributions.These processes are responsible for the origin of nonlinear optical effects and photochromic reactions in multiparticle aggregates.To describe photo-induced transformations in resonant domains and alterations in their absorption spectra remaining after the pulse action,we introduce the factor of spectral photomodification.Based on calculation of changes in thermodynamic,mechanical,and optical characteristics of the domains,the histograms of the spectrum photomodification factor have been obtained for various interparticle gaps,an average particle size,and the degree of polydispersity.Variations in spectra have been analyzed depending on the intensity of laser radiation and various combinations of size characteristics of domains.The obtained results can be used to predict manifestation of photochromic effects in composite materials containing different plasmonic nanoparticle aggregates in pulsed laser fields.  相似文献   

20.
A series of silver nanoparticle embedded in erbium-doped tellurite glasses were synthesized using a one step melt-quenching method. Density and refractive index of glasses were measured. Thermal and optical characterizations were performed and plasmon bands of elliptical nanoparticles were observed. An enhancement of green (525 and 550 nm) and red (632 nm) lines in luminescence spectra of Er3+-doped silver-embedded tellurite glass was recorded and explained by energy transfer mechanism from silver nanoparticles to erbium ion in addition to enhanced local field in vicinity of metallic nanoparticles in the glass. The presence of nanoparticles was confirmed by transmission electron microscopy imaging and reduction of silver ions to silver neutral particles discussed through the redox potential estimation in probable reactions. Silver-erbium co-doped tellurite glass exhibits strong novel optical properties which nominate it as the promising glass for laser, color displays, and photonic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号