首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 792 毫秒
1.
We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. When only measurements subject to noise of surface tensors are available for reconstruction, we recommend to use certain values of the surface tensors, namely harmonic intrinsic volumes instead of the surface tensors evaluated at the standard basis. The second algorithm we present is based on harmonic intrinsic volumes and allows for noisy measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based on measurements subject to noise is established under certain assumptions on the noise variables.  相似文献   

2.
A symmetric tensor is called copositive if it generates a multivariate form taking nonnegative values over the nonnegative orthant. Copositive tensors have found important applications in polynomial optimization, tensor complementarity problems and vacuum stability of a general scalar potential. In this paper, we consider copositivity detection of tensors from both theoretical and computational points of view. After giving several necessary conditions for copositive tensors, we propose several new criteria for copositive tensors based on the representation of the multivariate form in barycentric coordinates with respect to the standard simplex and simplicial partitions. It is verified that, as the partition gets finer and finer, the concerned conditions eventually capture all strictly copositive tensors. Based on the obtained theoretical results with the help of simplicial partitions, we propose a numerical method to judge whether a tensor is copositive or not. The preliminary numerical results confirm our theoretical findings.  相似文献   

3.
In this paper, first we give the definition of standard tensor. Then we clarify the relationship between weakly irreducible tensors and weakly irreducible polynomial maps by the definition of standard tensor. And we prove that the singular values of rectangular tensors are the special cases of the eigen-values of standard tensors related to rectangular tensors. Based on standard tensor, we present a generalized version of the weak Perron-Frobenius Theorem of nonnegative rectangular tensors under weaker conditions. Furthermore, by studying standard tensors, we get some new results of rectangular tensors. Besides, by using the special structure of standard tensors corresponding to nonnegative rectangular tensors, we show that the largest singular value is really geometrically simple under some weaker conditions.  相似文献   

4.
A definition for functions of multidimensional arrays is presented. The definition is valid for third‐order tensors in the tensor t‐product formalism, which regards third‐order tensors as block circulant matrices. The tensor function definition is shown to have similar properties as standard matrix function definitions in fundamental scenarios. To demonstrate the definition's potential in applications, the notion of network communicability is generalized to third‐order tensors and computed for a small‐scale example via block Krylov subspace methods for matrix functions. A complexity analysis for these methods in the context of tensors is also provided.  相似文献   

5.
New relations for the stress and strain tensors, which comprise energy pairs, are obtained for a non-linearly elastic material using a similar method to that employed by Novozhilov, based on a trigonometric representation of the tensors. Shear strain and stress tensors, not used previously, are introduced in a natural way. It is established that the unit tensor, the deviator and the shear tensor form an orthogonal tensor basis. The stress tensor can be expanded in a strain-tensor basis and vice versa. By using this expansion, the non-linear law of elasticity can be written in a compact and physically clear form. It is shown that in the frame of the principal axes the stresses are expressed in terms of the strains and vice versa using linear relations, while the non-linearity is contained in the coefficients, which are functions of mixed invariants of the tensors, introduced by Novozhilov, the generalized moduli of bulk compression and shear and the phase of similitude of the deviators. Relations for different energy pairs of tensors are considered, including for tensors of the true stresses and strains, where the generalized moduli of elasticity have a physical meaning for large strains.  相似文献   

6.
This paper develops the Bernstein tensor concentration inequality for random tensors of general order,based on the use of Einstein products for tensors.This establishes a strong link between these and matrices,which in turn allows exploitation of existing results for the latter.An interesting application to sample estimators of high-order moments is presented as an illustration.  相似文献   

7.
A general algebraic framework is developed for characterizing the set of possible effective tensors of composites. A transformation to the polarization-problem simplifies the derivation of the Hashin-Shtrikman variational principles and simplifies the calculation of the effective tensors of laminate materials. A general connection is established between two methods for bounding effective tensors of composites. The first method is based on the variational principles of Hashin and Shtrikman. The second method, due to Tartar, Murat, Lurie, and Cherkaev, uses translation operators or, equivalently, quadratic quasiconvex functions. A correspondence is established between these translation operators and bounding operators on the relevant non-local projection operator, T1. An important class of bounds, namely trace bounds on the effective tensors of two-component media, are given a geometrical interpretation: after a suitable fractional linear transformation of the tensor space each bound corresponds to a tangent plane to the set of possible tensors. A wide class of translation operators that generate these bounds is found. The extremal translation operators in this class incorporate projections onto spaces of antisymmetric tensors. These extremal translations generate attainable trace bounds even when the tensors of the two-components are not well ordered. In particular, they generate the bounds of Walpole on the effective bulk modulus. The variational principles of Gibiansky and Cherkaev for bounding complex effective tensors are reviewed and used to derive some rigorous bounds that generalize the bounds conjectured by Golden and Papanicolaou. An isomorphism is shown to underlie their variational principles. This isomorphism is used to obtain Dirichlet-type variational principles and bounds for the effective tensors of general non-selfadjoint problems. It is anticipated that these variational principles, which stem from the work of Gibiansky and Cherkaev, will have applications in many fields of science.  相似文献   

8.
The specification of conditional probability tables (CPTs) is a difficult task in the construction of probabilistic graphical models. Several types of canonical models have been proposed to ease that difficulty. Noisy-threshold models generalize the two most popular canonical models: the noisy-or and the noisy-and. When using the standard inference techniques the inference complexity is exponential with respect to the number of parents of a variable. More efficient inference techniques can be employed for CPTs that take a special form. CPTs can be viewed as tensors. Tensors can be decomposed into linear combinations of rank-one tensors, where a rank-one tensor is an outer product of vectors. Such decomposition is referred to as Canonical Polyadic (CP) or CANDECOMP-PARAFAC (CP) decomposition. The tensor decomposition offers a compact representation of CPTs which can be efficiently utilized in probabilistic inference. In this paper we propose a CP decomposition of tensors corresponding to CPTs of threshold functions, exactly -out-of-k functions, and their noisy counterparts. We prove results about the symmetric rank of these tensors in the real and complex domains. The proofs are constructive and provide methods for CP decomposition of these tensors. An analytical and experimental comparison with the parent-divorcing method (which also has a polynomial complexity) shows superiority of the CP decomposition-based method. The experiments were performed on subnetworks of the well-known QMRT-DT network generalized by replacing noisy-or by noisy-threshold models.  相似文献   

9.
In this paper we present a systematic way of computing the polarization tensors, anisotropic as well as isotropic, based on the boundary integral method. We then use this method to compute the anisotropic polarization tensor for ellipses and ellipsoids. The computation reveals the pair of anisotropy and ellipses which produce the same polarization tensors.  相似文献   

10.
We define the {i}-inverse (i = 1, 2, 5) and group inverse of tensors based on a general product of tensors. We explore properties of the generalized inverses of tensors on solving tensor equations and computing formulas of block tensors. We use the {1}-inverse of tensors to give the solutions of a multilinear system represented by tensors. The representations for the {1}-inverse and group inverse of some block tensors are established.  相似文献   

11.
From Crofton's formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n‐dimensional Euclidean space. The estimators are based on one‐dimensional linear sections. In a design based setting we suggest three types of estimators. These are based on isotropic uniform random lines, vertical sections, and non‐isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting.  相似文献   

12.
We consider the deformation of the complex structure on an open Stein manifold. We show that a tame, compactly supported deformation of a Stein manifold is trivial. The remainder of our results are for deformations of the standard complex structure on Cn. A deformation of Cn which tends to a constant deformation faster that r-3 is trivial. Harmonic deformation tensors (w.r.t to the standard Euclidean metric) which are regular at infinity are constant.  相似文献   

13.
Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentially nonnegative tensors, which extends the concept of nonnegative tensors, and examine the maximum eigenvalue of an essentially nonnegative tensor using the polynomial optimization techniques. We first establish that finding the maximum eigenvalue of an essentially nonnegative symmetric tensor is equivalent to solving a sum of squares of polynomials (SOS) optimization problem, which, in its turn, can be equivalently rewritten as a semi-definite programming problem. Then, using this sum of squares programming problem, we also provide upper and lower estimates for the maximum eigenvalue of general symmetric tensors. These upper and lower estimates can be calculated in terms of the entries of the tensor. Numerical examples are also presented to illustrate the significance of the results.  相似文献   

14.
In this article necessary and sufficient conditions are given for the existence of an orthogonal basis consisting of standard (decomposable) symmetrized tensors for the class of tensors symmetrized using a Brauer character of the dihedral group.  相似文献   

15.
Finding the maximum eigenvalue of a symmetric tensor is an important topic in tensor computation and numerical multilinear algebra. In this paper, we introduce a new class of structured tensors called W‐tensors, which not only extends the well‐studied nonnegative tensors by allowing negative entries but also covers several important tensors arising naturally from spectral hypergraph theory. We then show that finding the maximum H‐eigenvalue of an even‐order symmetric W‐tensor is equivalent to solving a structured semidefinite program and hence can be validated in polynomial time. This yields a highly efficient semidefinite program algorithm for computing the maximum H‐eigenvalue of W‐tensors and is based on a new structured sums‐of‐squares decomposition result for a nonnegative polynomial induced by W‐tensors. Numerical experiments illustrate that the proposed algorithm can successfully find the maximum H‐eigenvalue of W‐tensors with dimension up to 10,000, subject to machine precision. As applications, we provide a polynomial time algorithm for computing the maximum H‐eigenvalues of large‐size Laplacian tensors of hyperstars and hypertrees, where the algorithm can be up to 13 times faster than the state‐of‐the‐art numerical method introduced by Ng, Qi, and Zhou in 2009. Finally, we also show that the proposed algorithm can be used to test the copositivity of a multivariate form associated with symmetric extended Z‐tensors, whose order may be even or odd.  相似文献   

16.
In this paper,we give further results on the Drazin inverse of tensors via the Einstein product.We give a limit formula for the Drazin inverse of tensors.By using this formula,the representations for the Drazin inverse of several block tensor are obtained.Further,we give the Drazin inverse of the sum of two tensors based on the representation for the Drazin inverse of a block tensor.  相似文献   

17.
Application of various minimization methods to trilinear approximation of tensors is considered. These methods are compared based on numerical calculations. For the Gauss-Newton method, an efficient implementation is proposed, and the local rate of convergence is estimated for the case of completely symmetric tensors.  相似文献   

18.
Finding the minimal H-eigenvalue of tensors is an important topic in tensor computation and numerical multilinear algebra. This paper is devoted to a sum-of-squares (SOS) algorithm for computing the minimal H-eigenvalues of tensors with some sign structures called extended essentially nonnegative tensors (EEN-tensors), which includes nonnegative tensors as a subclass. In the even-order symmetric case, we first discuss the positive semi-definiteness of EEN-tensors, and show that a positive semi-definite EEN-tensor is a nonnegative tensor or an M-tensor or the sum of a nonnegative tensor and an M-tensor, then we establish a checkable sufficient condition for the SOS decomposition of EEN-tensors. Finally, we present an efficient algorithm to compute the minimal H-eigenvalues of even-order symmetric EEN-tensors based on the SOS decomposition. Numerical experiments are given to show the efficiency of the proposed algorithm.  相似文献   

19.
The exact numerical simulation of piezoelectric transducers needs the knowledge of all material tensors that occur in the piezoelectric constitutive relations. The determination of these tensors is achieved by a simulation based algorithm which adjusts the 3D - FEM simulated data with electrical measurements of a piezoelectric transducer. Its advantage compared to the standards (see [1], [2]) lies in the fact that a determination of the complete set of material parameters from one arbitrarily shaped specimen with a high precision is possible. The reconstruction of the material tensors is formulated as a parameter identification problem for a system of PDEs. Since unique solvability of this inverse problem may hardly be verified, the system of equations we have to solve for recovering the material tensor entries can be rank deficient and therefore requires application of appropriate regularization strategies. For this purpose, we use inexact Newton methods. The material parameters are assumed to be complex-valued which allows to account for mechanical, dielectric and piezoelectric losses. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The concept of tensor rank was introduced in the 20s. In the 70s, when methods of Component Analysis on arrays with more than two indices became popular, tensor rank became a much studied topic. The generic rank may be seen as an upper bound to the number of factors that are needed to construct a random tensor. We explain in this paper how to obtain numerically in the complex field the generic rank of tensors of arbitrary dimensions, based on Terracini’s lemma, and compare it with the algebraic results already known in the real or complex fields. In particular, we examine the cases of symmetric tensors, tensors with symmetric matrix slices, complex tensors enjoying Hermitian symmetries, or merely tensors with free entries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号