首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study the propagation of shear waves in a magnetoelastic self-reinforced medium using finite difference technique. Dispersion equation has been deduced for the case when (n ? 1) layers lie over a half space. It is observed that the obtained dispersion equation is in assertion with the classical Love wave equation for both the cases when a single and double layer lies over a half space. The stability condition for the used finite difference scheme and the expression for the phase and group velocity have been derived. The dispersion curve for different values of magnetoelastic coupling parameter, phase and group velocity variation for different values of stability ratio has been depicted by means of graphs.  相似文献   

2.
Zhaqilao 《Nonlinear dynamics》2020,99(4):2945-2960
Nonlinear Dynamics - A novel complex nonlinear wave equation was recently found by Mukherjee and Kundu (Phys. Lett. A 383:985–990, 2019) and shown that it possesses the first-order rogue...  相似文献   

3.
The (3+1)-dimensional nonlinear Schrödinger equation with different distributed transverse diffraction and dispersion is studied based on the similarity transformation, and exact bright soliton solution on cnoidal wave backgrounds is derived. Moreover, three kinds of dynamical behaviors of these soliton solutions in three different dispersion/diffraction decreasing media with the Gaussian, hyperbolic, and Logarithmic profiles are discussed. Solitons interact with cnws and/or the change of characteristics of solitons by an addition of cnws are studied. Result of comparison with three media indicates that for the same parameters, the bright soliton in the Gaussian profile is compressed to the utmost degree. These results are potentially useful for future experiments in the optical communications, long-haul telecommunication networks, and Bose–Einstein condensations.  相似文献   

4.
5.
We experimentally investigated nonlinear combination resonances in two graphite-epoxy cantilever plates having the configurations (90/30/-30/-30/30/90)s and (-75/75/75/-75/75/-75)s. As a first step, we compared the natural frequencies and modes shapes obtained from the finite-element and experimental-modal analyses. The largest difference in the obtained frequencies for both plates was 6%. Then, we transversely excited the plates and obtained force-response and frequency-response curves, which were used to characterize the plate dynamics. We acquired time-domain data for specific input conditions using an A/D card and used them to generate time traces, power spectra, pseudo-state portraits, and Poincaré maps. The data were obtained with an accelerometer monitoring the excitation and a laser vibrometer monitoring the plate response. We observed the external combination resonance % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabfM6axjabgIKi7kabeM8a3naaBaaaleaacaaIYaaabeaakiab% gUcaRiabeM8a3naaBaaaleaacaaI3aaabeaaaaa!45C9!\[\Omega \approx \omega _2 + \omega _7 \] in the quasi-isotropic plate and the external combination resonance % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabfM6axjabgIKi7kaacIcacaaIXaGaai4laiaaikdacaGGPaGa% aiikaiabeM8a3naaBaaaleaacaaIYaaabeaakiabgUcaRiabeM8a3n% aaBaaaleaacaaI1aaabeaakiaacMcaaaa!4AAD!\[\Omega \approx (1/2)(\omega _2 + \omega _5 )\] and the internal combination resonance % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabfM6axjabgIKi7kabeM8a3naaBaaaleaacaaI4aaabeaakiab% gIKi7kaacIcacaaIXaGaai4laiaaikdacaGGPaGaaiikaiabeM8a3n% aaBaaaleaacaaIYaaabeaakiabgUcaRiabeM8a3naaBaaaleaacaaI% XaGaaG4maaqabaGccaGGPaaaaa!4FDC!\[\Omega \approx \omega _8 \approx (1/2)(\omega _2 + \omega _{13} )\] in the ±75 plate, where the % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabeM8a3naaBaaaleaacaWGPbaabeaaaaa!3F16!\[\omega _i \] are the natural frequencies of the plate and is the excitation frequency. The results show that a low-amplitude high-frequency excitation can produce a high-amplitude low-frequency motion.  相似文献   

6.
7.
The nonequilibrium displacement characteristics are investigated experimentally and by numerical calculation of the nonequilibrium percolation equations under various conditions of wetting of the porous medium by the displacing and displaced fluids. A scheme for calculating the disequilibrium parameter is proposed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 97–104, November–December, 1990.  相似文献   

8.
Nonlinear planar oscillations of suspended cables subjected to external excitations with three-to-one internal resonances are investigated. At first, the Galerkin method is used to discretize the governing nonlinear integral–partial-differential equation. Then, the method of multiple scales is applied to obtain the modulation equations in the case of primary resonance. The equilibrium solutions, the periodic solutions and chaotic solutions of the modulation equations are also investigated. The Newton–Raphson method and the pseudo-arclength path-following algorithm are used to obtain the frequency/force–response curves. The supercritical Hopf bifurcations are found in these curves. Choosing these bifurcations as the initial points and applying the shooting method and the pseudo-arclength path-following algorithm, the periodic solution branches are obtained. At the same time, the Floquet theory is used to determine the stability of the periodic solutions. Numerical simulations are used to illustrate the cascades of period-doubling bifurcations leading to chaos. At last, the nonlinear responses of the two-degree-of-freedom model are investigated.  相似文献   

9.
This paper uses the Taylor expansion to seek an approximate Korteweg- de Vries equation (KdV) solution to a higher-order traffic flow model with sufficiently large diffusion. It demonstrates the validity of the approximate KdV solution considering all the related parameters to ensure the physical boundedness and the stability of the solution. Moreover, when the viscosity coefficient depends on the density and velocity of the flow, the wave speed of the KdV solution is naturally related to either the first or the second characteristic field. The finite element method is extended to solve the model and examine the stability and accuracy of the approximate KdV solution.  相似文献   

10.
Weak nonlinear waves in a generalized viscoelastic medium with internal oscillators are considered. The rheological relations contain higher time derivatives of the stresses and strains as well as their tensor products. The method of expansion in a small parameter with the introduction of slow time and a running space coordinate is employed. The first approximation gives wave velocities and relations between the parameters equivalent to the results of an acoustic analysis at elastic wave fronts [1]. The second approximation leads to an evolution equation for the displacement velocity. For this a Fourier-Laplace double integral transformation is used. Reversion to the inverse transforms of the unknown functions leads to an integrodifferential evolution equation, which contains a Hubert transform and is a generalization of the Benjamin-Ono equation of deep water theory.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 95–103, September–October, 1990.  相似文献   

11.
A modified form of Green's integral theorem is employed to derive the energy identity in any water wave diffraction problem in a single-layer fluid for free-surface boundary condition with higher-order derivatives. For a two-layer fluid with free-surface boundary condition involving higher-order derivatives, two forms of energy identities involving transmission and reflection coefficients for any wave diffraction problem are also derived here by the same method. Based on this modified Green's theorem, hydrodynamic relations such as the energy-conservation principle and modified Haskind-Hanaoka relation are derived for radiation and diffraction problems in a single as well as two-layer fluid.  相似文献   

12.
Forced vibrations of cylindrical shells described by a system of three ordinary differential equations are studied. There are two internal resonances. Standing and traveling waves in the shells are described by a system of six modulation equations derived using the multiple-scales method. These waves are analyzed for stability __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 2, pp. 51–58, February 2006.  相似文献   

13.
14.
15.
General nonlocal diffusive and dispersive transport theories are derived from molecular hydrodynamics and associated theories of statistical mechanical correlation functions, using the memory function formalism and the projection operator method. Expansion approximations of a spatially and temporally nonlocal convective-dispersive equation are introduced to derive linearized inverse solutions for transport coefficients. The development is focused on deriving relations between the frequency-and wave-vector-dependent dispersion tensor and measurable quantities. The resulting theory is applicable to porous media of fractal character.Nomenclature C v (t) particle velocity correlation function - C v ,(t) particle fluctuation velocity correlation function - C j (x,t) current correlation function - D(x,t) dispersion tensor - D(x,t) fluctuation dispersion tensor - f 0(x,p) equilibrium phase probability distribution function - f(x, p;t) nonequilibrium phase probability distribution function - G(x,t) conditional probability per unit volume of finding a particle at (x,t) given it was located elsewhere initially - (k,t) Fourier transform ofG(x,t) - G(x,t) fluctuation conditional probability per unit volume of finding a particle at (x,t) given it was located elsewhere initially - k wave vector - K(t) memory function - L Liouville operator - m mass - p(t) particle momentum coordinate - P = (0)( , (0)) projection operator - Q =I-P projection operator - s real Laplace space variable - S(k, ) time-Fourier transform of(k,t) - t time - v(t) particle velocity vector - v(t) particle fluctuation velocity vector - V phase space velocity - time-Fourier variable - (itn)(k) frequency moment of(k,t) - x(t) particle displacement coordinate - x(t) particle displacement fluctuation coordinate - friction coefficient - (t) normalized correlation function General Functions () Dirac delta function - () Gamma function Averages 0 Equilibrium phase-space average - Nonequilibrium phase-space average - (,) L 2 inner product with respect tof 0  相似文献   

16.
In this paper, the nonlinear planar vibration of a pipe conveying pulsatile fluid subjected to principal parametric resonance in the presence of internal resonance is investigated. The pipe is hinged to two immovable supports at both ends and conveys fluid at a velocity with a harmonically varying component over a constant mean velocity. The geometric cubic nonlinearity in the equation of motion is due to stretching effect of the pipe. The natural frequency of the second mode is approximately three times the natural frequency of the first mode for a range of mean flow velocity, resulting in a three-to-one internal resonance. The analysis is done using the method of multiple scales (MMS) by directly attacking the governing nonlinear integral-partial-differential equations and the associated boundary conditions. The resulting set of first-order ordinary differential equations governing the modulation of amplitude and phase is analyzed numerically for principal parametric resonance of first mode. Stability, bifurcation, and response behavior of the pipe are investigated. The results show new zones of instability due to the presence of internal resonance. A wide array of dynamical behavior is observed, illustrating the influence of internal resonance.  相似文献   

17.
18.
In this study, the yaw dynamics of a towed caster wheel system is analysed via an in-plane, one degree-of-freedom mechanical model. The force and aligning torque generated by the elastic tyre are calculated by means of a semi-stationary tyre model, in which the piecewise-smooth characteristic of the tyre forces is also considered, resulting in a dynamical system with higher-order discontinuities. The focus of our analysis is the Hopf bifurcation affected by the non-smoothness of the system. The structure of the analysis is organised in a similar way as in case of smooth bifurcations. Firstly, the centre-manifold reduction is performed, then we compose the normal form of the bifurcation. Based on the Galerkin technique an approximate, semi-analytical method to calculate the limit cycles is introduced and compared with the method of collocation. The analysis provides a deeper insight into the development of the vibrations associated with wheel shimmy and demonstrate how the non-smoothness due to contact-friction influences the dynamic behaviour.  相似文献   

19.
The latest results relating to the theory of nonlinear waves in dispersive and dissipative media are reviewed. Attention is concentrated on small-amplitude solitary waves and, in particular, on the classification of types of solitary waves, their conditions of existence, the evolution of local perturbations associated with the presence of solitary waves of various types, and problems of the existence of nonlinear waves localized with respect to a particular direction as the space dimension increases (spontaneous dimension breaking). As examples of dispersive and dissipative media admitting plane solitary waves of various types, we consider a cold collisionless plasma, an ideal incompressible fluid of finite depth beneath an elastic plate and with surface tension, and a fluid in a rapidly oscillating rectangular vessel (Faraday resonance). Examples of spontaneous dimension breaking are considered for the generalized Kadomtsev-Petviashvili equation. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 3–27. March–April, 2000. The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 99-0101150).  相似文献   

20.
The equations describing the stationary envelope of periodic waves on the surface of a liquid of constant or variable depth are investigated. Methods previously used for investigating the propagation of solitons [1–5] are extended to the case of periodic waves. The equations considered are derived from the cubic Schrödinger equation assuming slow variation of the wave parameters. In using these equations it is sometimes necessary to introduce wave jumps. By analogy with the soliton case a wave jump theory in accordance with which the jumps are interpreted as three-wave resonant interactions is considered. The problems of Mach reflection from a vertical wall and the decay of an arbitrary wave jump are solved. In order to provide a basis for the theory solutions describing the interaction of two waves over a horizontal bottom are investigated. The averaging method [6] is used to derive systems of equations describing the propagation of one or two interacting wave's on the surface of a liquid of constant or variable depth. These systems have steady-state solutions and can be written in divergence form.The author wishes to thank A. G. Kulikovskii and A. A. Barmin for useful discussions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 113–121, September–October, 1989.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号